Math Problem Statement

(ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD)\overline{(A\prime B\prime C\prime D+A\prime B\prime CD\prime+A\prime B\prime C\prime D\prime+A\prime B\prime CD+A\prime BC\prime D\prime+AB\prime C\prime D\prime+AB\prime C\prime D+AB\prime CD\prime+AB\prime CD+ABC\prime D\prime)}

Solution

The given expression is a Boolean algebra expression. To simplify it, we'll follow the steps of applying Boolean algebra rules.

Expression:

(ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+ABCD)\overline{(A'B'C'D + A'B'CD' + A'B'C'D' + A'B'CD + A'BC'D' + AB'C'D' + AB'C'D + AB'CD' + AB'CD + ABC'D')}

Step 1: Simplify the expression inside the complement.

Notice that we can group terms where only one variable changes:

  1. ABCD+ABCD=ABC(D+D)=ABCA'B'C'D + A'B'C'D' = A'B'C'(D + D') = A'B'C'
  2. ABCD+ABCD=ABC(D+D)=ABCA'B'CD' + A'B'CD = A'B'C(D' + D) = A'B'C
  3. ABCD+ABCD=ABC(D+D)=ABCAB'C'D' + AB'C'D = AB'C'(D' + D) = AB'C'
  4. ABCD+ABCD=ABC(D+D)=ABCAB'CD' + AB'CD = AB'C(D' + D) = AB'C

Now the expression becomes: (ABC+ABC+ABCD+ABC+ABC)\overline{(A'B'C' + A'B'C + A'BC'D' + AB'C' + AB'C)}

Step 2: Combine like terms

  • ABC+ABC=ABA'B'C' + A'B'C = A'B' (since C+C=1C' + C = 1)
  • ABC+ABC=ABAB'C' + AB'C = AB' (same reasoning as above)

So, the expression reduces to: (AB+ABCD+AB)\overline{(A'B' + A'BC'D' + AB')}

Step 3: Further simplification

Combine ABA'B' and ABAB':

  • AB+AB=BA'B' + AB' = B' (factoring BB')

So, the expression simplifies to: (B+ABCD)\overline{(B' + A'BC'D')}

Since ABCDA'BC'D' can't simplify further, the final expression inside the complement is: (B+ABCD)\overline{(B' + A'BC'D')}

Step 4: Apply De Morgan's law

Now apply De Morgan's law: (B+ABCD)=BABCD\overline{(B' + A'BC'D')} = B \cdot \overline{A'BC'D'}

Final simplified expression:

The expression remains: BABCDB \cdot \overline{A'BC'D'}

Since ABCD\overline{A'BC'D'} is not further simplifiable without additional information about the variables, this is the simplified expression.

Would you like more details or have any questions?

Related Questions:

  1. How does De Morgan's law apply to Boolean algebra?
  2. What are the basic Boolean algebra rules used in simplifications?
  3. How can truth tables help in verifying Boolean expressions?
  4. What are Karnaugh maps, and how do they assist in simplifications?
  5. How does the distributive property work in Boolean algebra?

Tip:

When simplifying Boolean expressions, always look for opportunities to factor common terms and apply Boolean identities.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Boolean Algebra
Boolean Identities
De Morgan's Laws

Formulas

-

Theorems

De Morgan's Laws

Suitable Grade Level

Undergraduate