Math Problem Statement

  1. $X = \overline{A.\overline{B}} + \overline{A.(\overline{A}+C)}$

  2. $X = \overline{(AB.\overline{C+D}).AB}$

Solution

Let's simplify both Boolean expressions step-by-step.

1. X=A.B+A.(A+C)X = \overline{A.\overline{B}} + \overline{A.(\overline{A}+C)}

Step 1: Apply De Morgan's Law

  • First, simplify each part separately.

  • For the term A.B\overline{A.\overline{B}}, use De Morgan's law: A.B=A+B\overline{A.\overline{B}} = \overline{A} + B

  • Now for A.(A+C)\overline{A.(\overline{A}+C)}, apply De Morgan's law: A.(A+C)=A+A+C\overline{A.(\overline{A}+C)} = \overline{A} + \overline{\overline{A}+C} Here, A+C\overline{\overline{A}+C} is simplified further using De Morgan's law: A+C=A.C\overline{\overline{A}+C} = A.\overline{C} So the term becomes: A.(A+C)=A+A.C\overline{A.(\overline{A}+C)} = \overline{A} + A.\overline{C}

Step 2: Combine the terms

Now substitute these simplified forms back into the original expression: X=(A+B)+(A+A.C)X = (\overline{A} + B) + (\overline{A} + A.\overline{C})

Step 3: Simplify

We can combine A\overline{A} from both terms: X=A+B+A.CX = \overline{A} + B + A.\overline{C} This is the simplest form of the Boolean expression.

Final simplified expression:

X=A+B+A.CX = \overline{A} + B + A.\overline{C}


2. ( X = \overline{(AB.\overline{

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Boolean Algebra
Logic Simplification
De Morgan's Law

Formulas

De Morgan's Law: \overline{A.B} = \overline{A} + \overline{B} and \overline{A + B} = \overline{A}.\overline{B}

Theorems

De Morgan's Theorem
Boolean Identities

Suitable Grade Level

Grades 10-12