Math Problem Statement

Simplify the following Boolean algebra expressions: 1. X = A̅B + A(A̅ + C) 2. X = (ABC + D)̅AB

Solution

The image contains two Boolean algebra expressions. Let’s break them down and simplify each.

Expression 1:

X=AB+A(A+C)X = \overline{A} \cdot B + A \cdot (\overline{A} + C) We will simplify this step by step:

  1. Apply the Distributive Property to the second term: A(A+C)=AA+ACA \cdot (\overline{A} + C) = A \cdot \overline{A} + A \cdot C Since AA=0A \cdot \overline{A} = 0, we get: ACA \cdot C So the expression becomes: X=AB+ACX = \overline{A} \cdot B + A \cdot C

This is the simplified form for expression 1.


Expression 2:

X=(ABC+D)(AB)X = \overline{(A \cdot B \cdot C + D)} \cdot (A \cdot B) We will simplify this step by step:

  1. Use De Morgan's law to break the negation of the sum: (ABC+D)=ABCD\overline{(A \cdot B \cdot C + D)} = \overline{A \cdot B \cdot C} \cdot \overline{D} Using De Morgan’s law on the first term ABC\overline{A \cdot B \cdot C}, we get: ABC=A+B+C\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C} So the expression becomes: X=(A+B+C)D(AB)X = (\overline{A} + \overline{B} + \overline{C}) \cdot \overline{D} \cdot (A \cdot B)
  2. Distribute ABA \cdot B across the terms: [ X = (A \cdot B \cdot \overline{A}) + (A \cdot B \cdot \overline{B}) + (A

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Boolean Algebra
Logic Simplification
De Morgan's Law
Distributive Property

Formulas

A + A̅ = 1
A * A̅ = 0
De Morgan's Law: (A * B)̅ = A̅ + B̅
Distributive Property: A(B + C) = AB + AC

Theorems

De Morgan's Theorem
Absorption Law
Distributive Law

Suitable Grade Level

High School (Grades 9-12), College Level