Math Problem Statement

solve it the easiest n fastest way

solve it the easiest n fastest way

Solution

Let's solve these problems step by step:


Problem 18:

6232+826\sqrt{2} - 3\sqrt{2} + 8\sqrt{2}

  • Combine like terms:
    (63+8)2=112(6 - 3 + 8)\sqrt{2} = 11\sqrt{2}

Answer: 11211\sqrt{2}


Problem 20:

532125\sqrt{3} - 2\sqrt{12}

  • Simplify 12\sqrt{12}:
    12=43=23\sqrt{12} = \sqrt{4 \cdot 3} = 2\sqrt{3}
  • Substitute back:
    532(23)=53435\sqrt{3} - 2(2\sqrt{3}) = 5\sqrt{3} - 4\sqrt{3}
  • Combine like terms:
    (54)3=3(5 - 4)\sqrt{3} = \sqrt{3}

Answer: 3\sqrt{3}


Problem 22:

(6+2)(32)(6 + \sqrt{2})(3 - \sqrt{2})
Use the distributive property:
63+6(2)+23+2(2)6 \cdot 3 + 6(-\sqrt{2}) + \sqrt{2} \cdot 3 + \sqrt{2}(-\sqrt{2})
Simplify step by step:

  • 63=186 \cdot 3 = 18
  • 6(2)=626(-\sqrt{2}) = -6\sqrt{2}
  • 23=32\sqrt{2} \cdot 3 = 3\sqrt{2}
  • 2(2)=2\sqrt{2}(-\sqrt{2}) = -2

Combine terms:
1862+32218 - 6\sqrt{2} + 3\sqrt{2} - 2
(182)+(62+32)=1632(18 - 2) + (-6\sqrt{2} + 3\sqrt{2}) = 16 - 3\sqrt{2}

Answer: 163216 - 3\sqrt{2}


Problem 24:

(2+3)2(2 + \sqrt{3})^2
Expand using the formula (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2:
22+2(2)(3)+(3)22^2 + 2(2)(\sqrt{3}) + (\sqrt{3})^2
Simplify step by step:

  • 22=42^2 = 4
  • 2(2)(3)=432(2)(\sqrt{3}) = 4\sqrt{3}
  • (3)2=3(\sqrt{3})^2 = 3

Combine terms:
4+43+3=7+434 + 4\sqrt{3} + 3 = 7 + 4\sqrt{3}

Answer: 7+437 + 4\sqrt{3}


If you’d like further explanation, let me know! Here are 5 related questions to practice:

  1. How would you simplify 75+2207\sqrt{5} + 2\sqrt{20}?
  2. Expand and simplify (32)2(3 - \sqrt{2})^2.
  3. Simplify 4273124\sqrt{27} - 3\sqrt{12}.
  4. What is 8+1850\sqrt{8} + \sqrt{18} - \sqrt{50}?
  5. Simplify (1+3)(23)(1 + \sqrt{3})(2 - \sqrt{3}).

Tip: Always look for perfect squares within radicals to simplify terms effectively.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplifying Radical Expressions
Expanding Binomials
Combining Like Terms

Formulas

Distributive property: (a + b)(c + d) = ac + ad + bc + bd
Square of a binomial: (a + b)^2 = a^2 + 2ab + b^2

Theorems

-

Suitable Grade Level

Grades 8-10