Math Problem Statement

Atskleiskite ir sutraukite panašiuosius narius.

Solution

Let's work through each part of the problem by expanding the expressions and combining like terms.

Solution:

  1. a) 2(2x+3y)+3(3x2y)2(2x + 3y) + 3(3x - 2y)
    Expanding each part: 22x+23y+33x32y=4x+6y+9x6y2 \cdot 2x + 2 \cdot 3y + 3 \cdot 3x - 3 \cdot 2y = 4x + 6y + 9x - 6y Combine like terms: (4x+9x)+(6y6y)=13x(4x + 9x) + (6y - 6y) = 13x Answer: 13x13x

  2. b) 5(x2y)+2(2x5y)-5(x - 2y) + 2(2x - 5y)
    Expanding each part: 5x+(5)(2y)+22x+2(5y)=5x+10y+4x10y-5 \cdot x + (-5) \cdot (-2y) + 2 \cdot 2x + 2 \cdot (-5y) = -5x + 10y + 4x - 10y Combine like terms: (5x+4x)+(10y10y)=x(-5x + 4x) + (10y - 10y) = -x Answer: x-x

  3. c) a(2a+b)b(b2a)a(2a + b) - b(b - 2a)
    Expanding each part: a2a+abbb+b2a=2a2+abb2+2aba \cdot 2a + a \cdot b - b \cdot b + b \cdot 2a = 2a^2 + ab - b^2 + 2ab Combine like terms: 2a2+(ab+2ab)b2=2a2+3abb22a^2 + (ab + 2ab) - b^2 = 2a^2 + 3ab - b^2 Answer: 2a2+3abb22a^2 + 3ab - b^2

  4. d) b(2b+a)a(a2b)-b(2b + a) - a(a - 2b)
    Expanding each part: b2bbaaa+a2b=2b2aba2+2ab-b \cdot 2b - b \cdot a - a \cdot a + a \cdot 2b = -2b^2 - ab - a^2 + 2ab Combine like terms: 2b2+(ab+2ab)a2=2b2+aba2-2b^2 + (-ab + 2ab) - a^2 = -2b^2 + ab - a^2 Answer: 2b2+aba2-2b^2 + ab - a^2

  5. e) 3x(2yx)+2y(3x2y)3x(2y - x) + 2y(3x - 2y)
    Expanding each part: 3x2y3xx+2y3x2y2y=6xy3x2+6xy4y23x \cdot 2y - 3x \cdot x + 2y \cdot 3x - 2y \cdot 2y = 6xy - 3x^2 + 6xy - 4y^2 Combine like terms: 3x2+(6xy+6xy)4y2=3x2+12xy4y2-3x^2 + (6xy + 6xy) - 4y^2 = -3x^2 + 12xy - 4y^2 Answer: 3x2+12xy4y2-3x^2 + 12xy - 4y^2

  6. f) 4y(x+y)2y(3x2y)-4y(x + y) - 2y(3x - 2y)
    Expanding each part: 4yx4yy2y3x+2y2y=4xy4y26xy+4y2-4y \cdot x - 4y \cdot y - 2y \cdot 3x + 2y \cdot 2y = -4xy - 4y^2 - 6xy + 4y^2 Combine like terms: (4xy6xy)+(4y2+4y2)=10xy(-4xy - 6xy) + (-4y^2 + 4y^2) = -10xy Answer: 10xy-10xy


Let me know if you would like further explanations for any part.

Related Questions

  1. How do you handle combining terms with different variables in expressions?
  2. What techniques can be used to simplify polynomials more efficiently?
  3. Can you explain the distributive property used in polynomial expansion?
  4. How would the process change if we included terms with higher powers, like x3x^3 or y3y^3?
  5. What are common mistakes to watch out for when simplifying polynomial expressions?

Tip:

Always double-check signs when distributing terms, as a single error with signs can change the entire outcome of the simplification.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Simplifying Expressions
Expanding Expressions
Combining Like Terms

Formulas

Distributive Property: a(b + c) = ab + ac

Theorems

-

Suitable Grade Level

Grades 8-10