Math Problem Statement

Evaluate absolute value expressions and simplify square roots.

Solution

Let's go through the problems shown in the image:

PART 4: Absolute Value

1. Evaluate the following absolute value expressions:

  • a. |5 − 8| 58=3=3|5 − 8| = |-3| = 3
  • b. |12 + (−4)| 12+(4)=124=8=8|12 + (−4)| = |12 − 4| = |8| = 8
  • c. |−7| + |3| 7+3=7+3=10|-7| + |3| = 7 + 3 = 10
  • d. |10 − 15| + |3 − 7| 1015+37=5+4=5+4=9|10 − 15| + |3 − 7| = |-5| + |-4| = 5 + 4 = 9
  • e. |−25 + 10| 25+10=15=15|-25 + 10| = |-15| = 15

2. Simplify and evaluate these combinations of absolute values:

  • a. |2| + |−6| − |4 − 9| 2+649=2+65=2+65=3|2| + |-6| − |4 − 9| = 2 + 6 − |-5| = 2 + 6 − 5 = 3
  • b. |7 − 13| + |20 − 15| 713+2015=6+5=6+5=11|7 − 13| + |20 − 15| = |-6| + |5| = 6 + 5 = 11
  • c. |18 − 25| + |(−3) + 4| 1825+3+4=7+1=7+1=8|18 − 25| + |-3 + 4| = |-7| + |1| = 7 + 1 = 8
  • d. |−15 + 6| + |9 − 5| 15+6+95=9+4=9+4=13|-15 + 6| + |9 − 5| = |-9| + |4| = 9 + 4 = 13
  • e. |25 − 30| + |−10| 2530+10=5+10=5+10=15|25 − 30| + |-10| = |-5| + 10 = 5 + 10 = 15

PART 5: Radicals

1. Simplify the following square roots:

  • a. 50\sqrt{50} 50=25×2=52\sqrt{50} = \sqrt{25 \times 2} = 5\sqrt{2}
  • b. 72\sqrt{72} 72=36×2=62\sqrt{72} = \sqrt{36 \times 2} = 6\sqrt{2}
  • c. 32\sqrt{32} 32=16×2=42\sqrt{32} = \sqrt{16 \times 2} = 4\sqrt{2}
  • d. 75\sqrt{75} 75=25×3=53\sqrt{75} = \sqrt{25 \times 3} = 5\sqrt{3}

2. Add or subtract the radicals:

  • a. 32+523\sqrt{2} + 5\sqrt{2} 32+52=(3+5)2=823\sqrt{2} + 5\sqrt{2} = (3 + 5)\sqrt{2} = 8\sqrt{2}
  • b. 4334\sqrt{3} − \sqrt{3} 433=(41)3=334\sqrt{3} − \sqrt{3} = (4 − 1)\sqrt{3} = 3\sqrt{3}
  • c. 18+22\sqrt{18} + 2\sqrt{2} 18=9×2=32\sqrt{18} = \sqrt{9 \times 2} = 3\sqrt{2} So, 32+22=(3+2)2=523\sqrt{2} + 2\sqrt{2} = (3 + 2)\sqrt{2} = 5\sqrt{2}
  • d. 57275\sqrt{7} − 2\sqrt{7} 5727=(52)7=375\sqrt{7} − 2\sqrt{7} = (5 − 2)\sqrt{7} = 3\sqrt{7}

Do you need further clarifications or any additional details?

Here are five related questions for practice:

  1. What is the absolute value of 16|-16|?
  2. Simplify 200\sqrt{200}.
  3. How would you add 18+50\sqrt{18} + \sqrt{50}?
  4. What is the result of 39+1220|3 - 9| + |12 - 20|?
  5. Simplify 45+80\sqrt{45} + \sqrt{80}.

Tip: When adding or subtracting radicals, make sure the radicals have the same root value (like terms) to combine them easily.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Absolute Value
Simplifying Radicals
Adding/Subtracting Radicals

Formulas

Absolute value: |x| = x if x >= 0, |x| = -x if x < 0
Square root simplification: √(a * b) = √a * √b
Adding/subtracting radicals: a√x + b√x = (a + b)√x

Theorems

Properties of Absolute Value
Radical Simplification

Suitable Grade Level

Grades 8-10