Math Problem Statement

Simplify the mathematical expressions provided in the image using radicals and/or positive exponents, and solve for specific values when variables are given.

Solution

Let's simplify and solve the questions step by step:

Question 3:

Simplify the following without a calculator:

a. 188\frac{\sqrt{18}}{\sqrt{8}}

188=94=94=32.\sqrt{\frac{18}{8}} = \sqrt{\frac{9}{4}} = \frac{\sqrt{9}}{\sqrt{4}} = \frac{3}{2}.

Answer: 32\frac{3}{2}.


b. 7512\frac{\sqrt{75}}{\sqrt{12}}

7512=254=254=52.\sqrt{\frac{75}{12}} = \sqrt{\frac{25}{4}} = \frac{\sqrt{25}}{\sqrt{4}} = \frac{5}{2}.

Answer: 52\frac{5}{2}.


c. a2b3a5b2=a25b3+2=a3b5a^2 b^3 \cdot a^{-5} b^2 = a^{2 - 5} \cdot b^{3 + 2} = a^{-3} \cdot b^5.

Using positive exponents: a3b5=b5a3.a^{-3} \cdot b^5 = \frac{b^5}{a^3}.

Answer: b5a3\frac{b^5}{a^3}.


d. 15x4y3x2y2\frac{15x^4y}{3x^2y^2}

Simplify coefficients: 153=5.\frac{15}{3} = 5.

Simplify x4/x2=x42=x2x^4 / x^2 = x^{4 - 2} = x^2.

Simplify y/y2=y12=y1=1yy / y^2 = y^{1 - 2} = y^{-1} = \frac{1}{y}.

Result: 5x21y=5x2y.\text{Result: } 5x^2 \cdot \frac{1}{y} = \frac{5x^2}{y}.

Answer: 5x2y\frac{5x^2}{y}.


Question 4:

If a=4a = -4 and b=5b = -5, find the values of:

a. 3a2b|3a| - |2b|

Calculate 3a|3a|: 3a=3(4)=12,3a=12.3a = 3(-4) = -12, \quad |3a| = 12.

Calculate 2b|2b|: 2b=2(5)=10,2b=10.2b = 2(-5) = -10, \quad |2b| = 10.

3a2b=1210=2.|3a| - |2b| = 12 - 10 = 2.

Answer: 22.


b. bab|b - a| - b

Calculate bab - a: ba=5(4)=5+4=1,ba=1=1.b - a = -5 - (-4) = -5 + 4 = -1, \quad |b - a| = |-1| = 1.

bab=1(5)=1+5=6.|b - a| - b = 1 - (-5) = 1 + 5 = 6.

Answer: 66.


Would you like further explanations for any part of this?
Here are related questions for practice:

  1. Simplify 502\frac{\sqrt{50}}{\sqrt{2}}.
  2. Solve x3y2x1y4x^3y^{-2} \cdot x^{-1}y^4 using positive exponents.
  3. Evaluate 4ab|4a| - |b| when a=3a = -3 and b=6b = 6.
  4. Simplify 20x55x2\frac{20x^5}{5x^2}.
  5. Rewrite (a2b3)2(a^2b^{-3})^2 using positive exponents.

Tip: When simplifying radicals, always look for perfect square factors to simplify efficiently.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Simplification of radicals
Operations with exponents
Absolute value calculations
Basic algebraic operations

Formulas

Simplifying radicals: sqrt(a/b) = sqrt(a) / sqrt(b)
Exponent rules: a^m * a^n = a^(m+n), (a^m) / (a^n) = a^(m-n)
Absolute value: |x| = x if x >= 0, |x| = -x if x < 0

Theorems

Exponent laws
Simplification of radicals using perfect squares

Suitable Grade Level

Grades 8-10