Math Problem Statement

solve 21

Solve question 21: Show that the shortest distance between the lines \(\vec{r} = -\hat{i} + 4\hat{j} + 3\hat{k} + \lambda (4\hat{i} + \hat{j} + 4\hat{k})\) and \(\vec{r} = -4\hat{i} + \hat{j} + 4\hat{k} + \mu (5\hat{i} + 2\hat{j} + \hat{k})\) is 24/√314.

Solution

To solve question 21, we need to find the shortest distance between the two given lines. The lines are provided in vector form as follows:

r1=a1+λb1=i^+4j^+3k^+λ(4i^+j^+4k^)\vec{r_1} = \vec{a_1} + \lambda \vec{b_1} = -\hat{i} + 4\hat{j} + 3\hat{k} + \lambda (4\hat{i} + \hat{j} + 4\hat{k}) r2=a2+μb2=4i^+j^+4k^+μ(5i^+2j^+k^)\vec{r_2} = \vec{a_2} + \mu \vec{b_2} = -4\hat{i} + \hat{j} + 4\hat{k} + \mu (5\hat{i} + 2\hat{j} + \hat{k})

To find the shortest distance dd between these skew lines, we use the formula:

d=(a2a1)(b1×b2)b1×b2d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|}

Step 1: Define a1\vec{a_1}, a2\vec{a_2}, b1\vec{b_1}, and b2\vec{b_2}

From the given equations:

  • a1=i^+4j^+3k^\vec{a_1} = -\hat{i} + 4\hat{j} + 3\hat{k}
  • a2=4i^+j^+4k^\vec{a_2} = -4\hat{i} + \hat{j} + 4\hat{k}
  • b1=4i^+j^+4k^\vec{b_1} = 4\hat{i} + \hat{j} + 4\hat{k}
  • b2=5i^+2j^+k^\vec{b_2} = 5\hat{i} + 2\hat{j} + \hat{k}

Step 2: Find a2a1\vec{a_2} - \vec{a_1}

a2a1=(4i^+j^+4k^)(i^+4j^+3k^)\vec{a_2} - \vec{a_1} = (-4\hat{i} + \hat{j} + 4\hat{k}) - (-\hat{i} + 4\hat{j} + 3\hat{k}) =(4+1)i^+(14)j^+(43)k^=3i^3j^+k^= (-4 + 1)\hat{i} + (1 - 4)\hat{j} + (4 - 3)\hat{k} = -3\hat{i} - 3\hat{j} + \hat{k}

Step 3: Compute b1×b2\vec{b_1} \times \vec{b_2}

b1=4i^+j^+4k^\vec{b_1} = 4\hat{i} + \hat{j} + 4\hat{k} b2=5i^+2j^+k^\vec{b_2} = 5\hat{i} + 2\hat{j} + \hat{k}

Using the cross product formula: b1×b2=i^j^k^414521\vec{b_1} \times \vec{b_2} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 1 & 4 \\ 5 & 2 & 1 \end{vmatrix}

Expanding the determinant: =i^(1142)j^(4145)+k^(4215)= \hat{i}(1 \cdot 1 - 4 \cdot 2) - \hat{j}(4 \cdot 1 - 4 \cdot 5) + \hat{k}(4 \cdot 2 - 1 \cdot 5) =i^(18)j^(420)+k^(85)= \hat{i}(1 - 8) - \hat{j}(4 - 20) + \hat{k}(8 - 5) =7i^+16j^+3k^= -7\hat{i} + 16\hat{j} + 3\hat{k}

So, b1×b2=7i^+16j^+3k^\vec{b_1} \times \vec{b_2} = -7\hat{i} + 16\hat{j} + 3\hat{k}.

Step 4: Calculate (a2a1)(b1×b2)|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|

a2a1=3i^3j^+k^\vec{a_2} - \vec{a_1} = -3\hat{i} - 3\hat{j} + \hat{k} b1×b2=7i^+16j^+3k^\vec{b_1} \times \vec{b_2} = -7\hat{i} + 16\hat{j} + 3\hat{k}

Dot product: (a2a1)(b1×b2)=(3)(7)+(3)(16)+(1)(3)(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2}) = (-3)(-7) + (-3)(16) + (1)(3) =2148+3=24= 21 - 48 + 3 = -24

So, (a2a1)(b1×b2)=24|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})| = 24.

Step 5: Calculate b1×b2|\vec{b_1} \times \vec{b_2}|

b1×b2=(7)2+162+32|\vec{b_1} \times \vec{b_2}| = \sqrt{(-7)^2 + 16^2 + 3^2} =49+256+9=314= \sqrt{49 + 256 + 9} = \sqrt{314}

Step 6: Calculate the shortest distance dd

d=(a2a1)(b1×b2)b1×b2d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|} =24314= \frac{24}{\sqrt{314}}

Thus, the shortest distance between the two lines is:

d=24314d = \frac{24}{\sqrt{314}}

Would you like a more detailed explanation of each step or have any questions?


Related Questions

  1. How can the formula for the shortest distance between skew lines be derived?
  2. What are other methods to find distances between skew lines?
  3. How does the cross product help in finding perpendicular distances in 3D geometry?
  4. What are practical applications of finding distances between lines in 3D space?
  5. How can vector projections be used to solve similar problems?

Tip

When calculating distances in 3D, always ensure vectors are correctly defined and cross products are accurately computed for precise results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Algebra
Distance Between Skew Lines
Cross Product
Dot Product

Formulas

Shortest distance formula: \(d = \frac{|(\vec{a_2} - \vec{a_1}) \cdot (\vec{b_1} \times \vec{b_2})|}{|\vec{b_1} \times \vec{b_2}|}\)
Cross product formula
Dot product formula

Theorems

Distance Between Skew Lines in 3D Space

Suitable Grade Level

Grade 11-12