Math Problem Statement
Нека A и B са крайни множества, такива че |A|=30 и |B|=47 . Кои от следните твърдения са верни?
a) Броят на инекциите от A в B e 47!17! .
b) Броят на 17-елементните подмножества на B е (4717) .
c) Броят на инекциите от A в B e (4717) .
d) Броят на 17-елементните подмножества на B е 47!17! .
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Set Theory
Combinatorics
Injections
Subsets
Formulas
Number of injections from A to B: 47! / (47-30)! = 47! / 17!
Number of k-element subsets: binomial coefficient (n choose k) = C(n, k) = n! / (k!(n-k)!)
Theorems
Binomial Theorem
Suitable Grade Level
Grades 11-12
Related Recommendation
Counting Functions from Set A to Set B: Injective, Surjective, and Total
Set Theory Problem: Elements in A but not in B
Calculating Surjective Functions from Set A to Set B
Analyzing Relations: Injectivity, Surjectivity, and Functions for Sets A={1} and B={1,2,3}
Solving Set Theory Venn Diagram with n(A) = 13 and n(B) = 8