Math Problem Statement

Soit X un ensemble et A ⊆ X. Notons Ac = {x ∈ X : x ∉ A} le complémentaire de A dans X. a) Donner ∅c et Xc. b) Montrer que (Ac)c = A pour toute partie A ⊆ X. c) Montrer que X = A ∪ Ac et que A ∩ Ac = ∅ pour tout A ⊆ X. d) Montrer que si A ⊆ B ⊆ X alors Bc ⊆ Ac. e) Montrer que (A ∩ B)c = Ac ∪ Bc et que (A ∪ B)c = Ac ∩ Bc pour toutes parties A, B ⊆ X.

Solution

Let's solve Exercise 4 step by step.

Given:

Let XX be a set and AXA \subseteq X. We define Ac={xX:xA}A^c = \{x \in X : x \notin A \} as the complement of AA in XX.

a) Give c\emptyset^c and XcX^c.

  • c\emptyset^c: The complement of the empty set in XX is XX because everything in XX is not in \emptyset. So, c=X\emptyset^c = X.
  • XcX^c: The complement of XX in XX is \emptyset, as there are no elements in XX that are not in XX. Therefore, Xc=X^c = \emptyset.

b) Show that (Ac)c=A(A^c)^c = A for every subset ( A \subseteq X \

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set theory
Set complements
Union and Intersection

Formulas

∅c = X, Xc = ∅
(Ac)c = A
X = A ∪ Ac, A ∩ Ac = ∅
If A ⊆ B, then Bc ⊆ Ac
(A ∩ B)c = Ac ∪ Bc
(A ∪ B)c = Ac ∩ Bc

Theorems

Complement of sets
Laws of Union and Intersection
De Morgan's laws

Suitable Grade Level

Undergraduate Mathematics (Set Theory)