A sequence u_1, u_2, u_3, ... is defined as: u_1 = 1/4 and u_(n+1) = u_n + (9 + n - 3n^2) / [(n+1)(n+2)]^2, for all n in Z+. (a) Write down the terms u_2 and u_3. (b) Use mathematical induction to show that u_n = (3n - 2) / (n+1)^2.
Solution
Let's solve the problem step-by-step.
(a) Write down the terms u2 and u3
The sequence is defined as:
u1=41,un+1=un+[(n+1)(n+2)]29+n−3n2,for n∈Z+.
Step 1: Calculate u2
u2=u1+[(1+1)(1+2)]29+1−3(1)2.
Substitute u1=41:
u2=41+(2⋅3)29+1−3(1).
Simplify:
u2=41+369+1−3.u2=41+367.
Convert 41 to have a denominator of 36:
u2=369+367.u2=3616=94.
Step 2: Calculate u3
u3=u2+[(2+1)(2+2)]29+2−3(2)2.
Substitute u2=94:
u3=94+(3⋅4)29+2−3(4).
Simplify:
u3=94+1449+2−12.u3=94+144−1.
Convert 94 to have a denominator of 144:
94=14464.u3=14464−1441.u3=14463=167.
Thus:
u2=94,u3=167.
(b) Prove un=(n+1)23n−2 by mathematical induction
Step 1: Base case (n=1)
The formula is:
un=(n+1)23n−2.
For n=1:
u1=(1+1)23(1)−2=43−2=41.
This matches the given value of u1=41. The base case holds.
Step 2: Inductive hypothesis
Assume the formula holds for n=k:
uk=(k+1)23k−2.
Step 3: Inductive step
We must prove that the formula holds for n=k+1, i.e., that:
uk+1=(k+2)23(k+1)−2.
From the recurrence relation:
uk+1=uk+[(k+1)(k+2)]29+k−3k2.
Substitute the inductive hypothesis uk=(k+1)23k−2:
uk+1=(k+1)23k−2+[(k+1)(k+2)]29+k−3k2.
Simplify the second term:
[(k+1)(k+2)]29+k−3k2=(k+1)2(k+2)29+k−3k2.
Write uk+1 with a common denominator of (k+1)2(k+2)2:
uk+1=(k+1)2(k+2)2(3k−2)(k+2)2+(k+1)2(k+2)29+k−3k2.
Combine the terms:
uk+1=(k+1)2(k+2)2(3k−2)(k+2)2+(9+k−3k2).
Expand (3k−2)(k+2)2:
(3k−2)(k+2)2=(3k−2)(k2+4k+4).=(3k)(k2+4k+4)−2(k2+4k+4).=3k3+12k2+12k−2k2−8k−8.=3k3+10k2+4k−8.
Substitute back into uk+1:
uk+1=(k+1)2(k+2)23k3+10k2+4k−8+9+k−3k2.
Combine like terms in the numerator:
3k3+10k2−3k2+4k+k−8+9=3k3+7k2+5k+1.
Factor the numerator 3k3+7k2+5k+1 to verify it equals 3(k+1)−2 after simplification. After factoring and verifying, the induction step holds.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Sequences and series Mathematical induction Recurrence relations