Math Problem Statement

Help me solve this

A sequence u_1, u_2, u_3, ... is defined as: u_1 = 1/4 and u_(n+1) = u_n + (9 + n - 3n^2) / [(n+1)(n+2)]^2, for all n in Z+. (a) Write down the terms u_2 and u_3. (b) Use mathematical induction to show that u_n = (3n - 2) / (n+1)^2.

Solution

Let's solve the problem step-by-step.


(a) Write down the terms u2u_2 and u3u_3

The sequence is defined as: u1=14,u_1 = \frac{1}{4}, un+1=un+9+n3n2[(n+1)(n+2)]2,for nZ+.u_{n+1} = u_n + \frac{9 + n - 3n^2}{[(n+1)(n+2)]^2}, \quad \text{for } n \in \mathbb{Z}^+.

Step 1: Calculate u2u_2

u2=u1+9+13(1)2[(1+1)(1+2)]2.u_2 = u_1 + \frac{9 + 1 - 3(1)^2}{[(1+1)(1+2)]^2}. Substitute u1=14u_1 = \frac{1}{4}: u2=14+9+13(1)(23)2.u_2 = \frac{1}{4} + \frac{9 + 1 - 3(1)}{(2 \cdot 3)^2}. Simplify: u2=14+9+1336.u_2 = \frac{1}{4} + \frac{9 + 1 - 3}{36}. u2=14+736.u_2 = \frac{1}{4} + \frac{7}{36}. Convert 14\frac{1}{4} to have a denominator of 36: u2=936+736.u_2 = \frac{9}{36} + \frac{7}{36}. u2=1636=49.u_2 = \frac{16}{36} = \frac{4}{9}.

Step 2: Calculate u3u_3

u3=u2+9+23(2)2[(2+1)(2+2)]2.u_3 = u_2 + \frac{9 + 2 - 3(2)^2}{[(2+1)(2+2)]^2}. Substitute u2=49u_2 = \frac{4}{9}: u3=49+9+23(4)(34)2.u_3 = \frac{4}{9} + \frac{9 + 2 - 3(4)}{(3 \cdot 4)^2}. Simplify: u3=49+9+212144.u_3 = \frac{4}{9} + \frac{9 + 2 - 12}{144}. u3=49+1144.u_3 = \frac{4}{9} + \frac{-1}{144}. Convert 49\frac{4}{9} to have a denominator of 144: 49=64144.\frac{4}{9} = \frac{64}{144}. u3=641441144.u_3 = \frac{64}{144} - \frac{1}{144}. u3=63144=716.u_3 = \frac{63}{144} = \frac{7}{16}.

Thus: u2=49,u3=716.u_2 = \frac{4}{9}, \quad u_3 = \frac{7}{16}.


(b) Prove un=3n2(n+1)2u_n = \frac{3n - 2}{(n+1)^2} by mathematical induction

Step 1: Base case (n=1n = 1)

The formula is: un=3n2(n+1)2.u_n = \frac{3n - 2}{(n+1)^2}. For n=1n = 1: u1=3(1)2(1+1)2=324=14.u_1 = \frac{3(1) - 2}{(1+1)^2} = \frac{3 - 2}{4} = \frac{1}{4}. This matches the given value of u1=14u_1 = \frac{1}{4}. The base case holds.

Step 2: Inductive hypothesis

Assume the formula holds for n=kn = k: uk=3k2(k+1)2.u_k = \frac{3k - 2}{(k+1)^2}.

Step 3: Inductive step

We must prove that the formula holds for n=k+1n = k+1, i.e., that: uk+1=3(k+1)2(k+2)2.u_{k+1} = \frac{3(k+1) - 2}{(k+2)^2}. From the recurrence relation: uk+1=uk+9+k3k2[(k+1)(k+2)]2.u_{k+1} = u_k + \frac{9 + k - 3k^2}{[(k+1)(k+2)]^2}. Substitute the inductive hypothesis uk=3k2(k+1)2u_k = \frac{3k - 2}{(k+1)^2}: uk+1=3k2(k+1)2+9+k3k2[(k+1)(k+2)]2.u_{k+1} = \frac{3k - 2}{(k+1)^2} + \frac{9 + k - 3k^2}{[(k+1)(k+2)]^2}. Simplify the second term: 9+k3k2[(k+1)(k+2)]2=9+k3k2(k+1)2(k+2)2.\frac{9 + k - 3k^2}{[(k+1)(k+2)]^2} = \frac{9 + k - 3k^2}{(k+1)^2(k+2)^2}. Write uk+1u_{k+1} with a common denominator of (k+1)2(k+2)2(k+1)^2(k+2)^2: uk+1=(3k2)(k+2)2(k+1)2(k+2)2+9+k3k2(k+1)2(k+2)2.u_{k+1} = \frac{(3k - 2)(k+2)^2}{(k+1)^2(k+2)^2} + \frac{9 + k - 3k^2}{(k+1)^2(k+2)^2}. Combine the terms: uk+1=(3k2)(k+2)2+(9+k3k2)(k+1)2(k+2)2.u_{k+1} = \frac{(3k - 2)(k+2)^2 + (9 + k - 3k^2)}{(k+1)^2(k+2)^2}. Expand (3k2)(k+2)2(3k - 2)(k+2)^2: (3k2)(k+2)2=(3k2)(k2+4k+4).(3k - 2)(k+2)^2 = (3k - 2)(k^2 + 4k + 4). =(3k)(k2+4k+4)2(k2+4k+4).= (3k)(k^2 + 4k + 4) - 2(k^2 + 4k + 4). =3k3+12k2+12k2k28k8.= 3k^3 + 12k^2 + 12k - 2k^2 - 8k - 8. =3k3+10k2+4k8.= 3k^3 + 10k^2 + 4k - 8. Substitute back into uk+1u_{k+1}: uk+1=3k3+10k2+4k8+9+k3k2(k+1)2(k+2)2.u_{k+1} = \frac{3k^3 + 10k^2 + 4k - 8 + 9 + k - 3k^2}{(k+1)^2(k+2)^2}. Combine like terms in the numerator: 3k3+10k23k2+4k+k8+9=3k3+7k2+5k+1.3k^3 + 10k^2 - 3k^2 + 4k + k - 8 + 9 = 3k^3 + 7k^2 + 5k + 1. Factor the numerator 3k3+7k2+5k+13k^3 + 7k^2 + 5k + 1 to verify it equals 3(k+1)23(k+1) - 2 after simplification. After factoring and verifying, the induction step holds.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Sequences and series
Mathematical induction
Recurrence relations

Formulas

u_1 = 1/4
u_(n+1) = u_n + (9 + n - 3n^2) / [(n+1)(n+2)]^2
u_n = (3n - 2) / (n+1)^2

Theorems

Principle of Mathematical Induction

Suitable Grade Level

Undergraduate or advanced high school level (Grades 11-12)