Math Problem Statement

Soit (u_n) la suite définie par u_1 = 3 et, pour tout entier naturel n, u_{n+1} = 1/2 * u_n + 1. Calculer les quatre premières termes de la suite (u_n). Exprimer u_{n+1} en fonction de u_n et de n.

Solution

The text in the image describes a sequence unu_n defined recursively by the relation:

un+1=12un+1withu1=4u_{n+1} = \frac{1}{2} u_n + 1 \quad \text{with} \quad u_1 = 4

You've provided some instructions labeled from 1 to 3:

  1. Calculer les quatre premières termes de la suite (Calculate the first four terms of the sequence).
  2. Expérimenter pour donner la valeur de unu_n en fonction de nn (Experiment to give the value of unu_n as a function of nn).
  3. Déterminer une formule explicite pour unu_n (Determine an explicit formula for unu_n).

Let's start by calculating the first four terms of the sequence unu_n.

Calculating the Terms

Given u1=4u_1 = 4:

  • u2=12u1+1=12×4+1=3u_2 = \frac{1}{2} u_1 + 1 = \frac{1}{2} \times 4 + 1 = 3
  • u3=12u2+1=12×3+1=2.5u_3 = \frac{1}{2} u_2 + 1 = \frac{1}{2} \times 3 + 1 = 2.5
  • ( u_

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Recursion
Sequences

Formulas

u_{n+1} = (1/2) * u_n + 1
First four terms: u_1, u_2, u_3, u_4

Theorems

-

Suitable Grade Level

Grades 10-12