Math Problem Statement

  1. Find all second partial derivatives of f(x, y) = e^ xy sin x

Solution

Given the function f(x,y)=exysinxf(x, y) = e^{xy} \sin x, we need to compute all the second partial derivatives. Specifically, we will find fxxf_{xx}, fyyf_{yy}, and fxyf_{xy}.

Let's go through the steps:

Step 1: Compute the First Partial Derivatives

  1. First partial derivative with respect to xx: fx=x(exysinx)f_x = \frac{\partial}{\partial x}(e^{xy} \sin x) Using the product rule: fx=exyx(sinx)+sinxx(exy)f_x = e^{xy} \frac{\partial}{\partial x}(\sin x) + \sin x \frac{\partial}{\partial x}(e^{xy}) fx=exycosx+sinxyexyf_x = e^{xy} \cos x + \sin x \cdot y e^{xy} Simplifying, we get: fx=exy(cosx+ysinx)f_x = e^{xy} (\cos x + y \sin x)

  2. First partial derivative with respect to yy: fy=y(exysinx)f_y = \frac{\partial}{\partial y}(e^{xy} \sin x) Here, we treat sinx\sin x as a constant with respect to yy: fy=sinxy(exy)f_y = \sin x \cdot \frac{\partial}{\partial y}(e^{xy}) fy=sinxxexy=xexysinxf_y = \sin x \cdot x e^{xy} = x e^{xy} \sin x

Step 2: Compute the Second Partial Derivatives

  1. Second partial derivative with respect to xx: fxx=x(fx)=x(exy(cosx+ysinx))f_{xx} = \frac{\partial}{\partial x}(f_x) = \frac{\partial}{\partial x} \left( e^{xy} (\cos x + y \sin x) \right) Applying the product rule: fxx=exyx(cosx+ysinx)+(cosx+ysinx)x(exy)f_{xx} = e^{xy} \frac{\partial}{\partial x}(\cos x + y \sin x) + (\cos x + y \sin x) \frac{\partial}{\partial x}(e^{xy}) fxx=exy(sinx+ycosx)+(cosx+ysinx)yexyf_{xx} = e^{xy} (-\sin x + y \cos x) + (\cos x + y \sin x) \cdot y e^{xy} Simplifying, we get: fxx=exy(sinx+ycosx+ycosx+y2sinx)f_{xx} = e^{xy} \left(-\sin x + y \cos x + y \cos x + y^2 \sin x \right) fxx=exy(y2sinx+2ycosxsinx)f_{xx} = e^{xy} \left(y^2 \sin x + 2y \cos x - \sin x \right)

  2. Second partial derivative with respect to yy: fyy=y(fy)=y(xexysinx)f_{yy} = \frac{\partial}{\partial y}(f_y) = \frac{\partial}{\partial y}(x e^{xy} \sin x) fyy=xsinxy(exy)=xsinxxexyf_{yy} = x \sin x \cdot \frac{\partial}{\partial y}(e^{xy}) = x \sin x \cdot x e^{xy} fyy=x2exysinxf_{yy} = x^2 e^{xy} \sin x

  3. Mixed partial derivative with respect to xx and yy: fxy=y(fx)=y(exy(cosx+ysinx))f_{xy} = \frac{\partial}{\partial y}(f_x) = \frac{\partial}{\partial y} \left( e^{xy} (\cos x + y \sin x) \right) Applying the product rule: fxy=exysinx+(cosx+ysinx)xexyf_{xy} = e^{xy} \cdot \sin x + (\cos x + y \sin x) \cdot x e^{xy} Simplifying: fxy=exysinx+xexy(cosx+ysinx)f_{xy} = e^{xy} \sin x + x e^{xy} (\cos x + y \sin x) fxy=exy(sinx+xcosx+xysinx)f_{xy} = e^{xy} (\sin x + x \cos x + xy \sin x)

Summary of Second Partial Derivatives

  • fxx=exy(y2sinx+2ycosxsinx)f_{xx} = e^{xy} (y^2 \sin x + 2y \cos x - \sin x)
  • fyy=x2exysinxf_{yy} = x^2 e^{xy} \sin x
  • fxy=exy(sinx+xcosx+xysinx)f_{xy} = e^{xy} (\sin x + x \cos x + xy \sin x)

Would you like further details on each step, or have any specific questions?


Additional Questions

  1. How would the process differ if f(x,y)=exycosxf(x, y) = e^{xy} \cos x?
  2. What if we needed only the mixed derivative fxyf_{xy}?
  3. Could you compute third partial derivatives of this function?
  4. How does changing exye^{xy} to ex+ye^{x+y} affect the result?
  5. How would this approach change for f(x,y,z)=exyzsinxf(x, y, z) = e^{xyz} \sin x?

Tip:

Always verify mixed derivatives fxy=fyxf_{xy} = f_{yx} to ensure correct partial differentiation in multi-variable functions.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Derivatives
Multivariable Calculus
Differentiation Rules

Formulas

f_x = ∂f/∂x
f_y = ∂f/∂y
f_{xx} = ∂²f/∂x²
f_{yy} = ∂²f/∂y²
f_{xy} = ∂²f/∂x∂y

Theorems

Mixed Derivatives Theorem (f_{xy} = f_{yx})

Suitable Grade Level

University-level Calculus