Math Problem Statement

Find the radius of convergence and the interval of convergence of the given series using the ratio test: ∑(3x - 2) / (n * 3^n) from n=1 to infinity.

Solution

To determine the radius and interval of convergence for the given series

n=13x2n3n,\sum_{n=1}^{\infty} \frac{3x - 2}{n 3^n},

we can apply the Ratio Test. The Ratio Test states that for a series an\sum a_n, if

limnan+1an=L,\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L,

then:

  1. The series converges if L<1L < 1,
  2. The series diverges if L>1L > 1,
  3. The test is inconclusive if L=1L = 1.

Step-by-Step Solution

  1. Identify ana_n: For the given series, the general term is: an=3x2n3n.a_n = \frac{3x - 2}{n 3^n}.

  2. Compute an+1an\left| \frac{a_{n+1}}{a_n} \right|: We need to find an+1a_{n+1} and then set up the ratio: an+1=3x2(n+1)3n+1.a_{n+1} = \frac{3x - 2}{(n+1) 3^{n+1}}. Now, we calculate the ratio: an+1an=3x2(n+1)3n+13x2n3n.\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{3x - 2}{(n+1) 3^{n+1}}}{\frac{3x - 2}{n 3^n}} \right|.

  3. Simplify the Ratio: This simplifies to: an+1an=3x23nn+1.\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{3x - 2}{3} \cdot \frac{n}{n+1} \right|. Taking the limit as nn \to \infty, we get: limnan+1an=3x23.\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{3x - 2}{3} \right|.

  4. Set up the inequality for convergence: For convergence, we require: 3x23<1.\left| \frac{3x - 2}{3} \right| < 1. Simplifying this inequality, we find: 1<3x23<1.-1 < \frac{3x - 2}{3} < 1. Multiply through by 3: 3<3x2<3.-3 < 3x - 2 < 3. Adding 2 to each part: 1<3x<5.-1 < 3x < 5. Now, divide by 3: 13<x<53.-\frac{1}{3} < x < \frac{5}{3}.

  5. Conclusion: The radius of convergence is: R=53(13)=23.R = \frac{5}{3} - \left(-\frac{1}{3}\right) = \frac{2}{3}. The interval of convergence is: [

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Series Convergence
Radius of Convergence
Interval of Convergence
Ratio Test

Formulas

Ratio Test: lim (n → ∞) |a_(n+1) / a_n| = L
Convergence Condition: if L < 1, the series converges

Theorems

Ratio Test

Suitable Grade Level

Undergraduate Calculus