Math Problem Statement

El sistema de la figura está inicialmente en reposo. El bloque de 30 kg está a 2 m del suelo. La polea (I = 1/2MR^2) es un disco uniforme de 20 cm de diámetro y 5 kg de masa. Se supone que la cuerda no resbala sobre la polea. Encontrar: a. La velocidad del bloque de 30 kg justo antes de tocar el suelo. b. La velocidad angular de la polea en ese instante. c. Las tensiones de la cuerda. d. El tiempo que tarda el bloque de 30 kg en tocar el suelo.

Solution

This problem involves analyzing the dynamics and energy balance of a pulley system. I'll solve it step by step:

Given Data:

  • Block mass mb=30kgm_b = 30 \, \mathrm{kg}
  • Pulley mass mp=5kgm_p = 5 \, \mathrm{kg}
  • Pulley radius r=0.1mr = 0.1 \, \mathrm{m} (diameter is 0.2 m)
  • Pulley moment of inertia I=12mpr2I = \frac{1}{2} m_p r^2
  • Height h=2mh = 2 \, \mathrm{m}

We assume no slipping between the rope and the pulley.


a) Velocity of the block before touching the ground (vv):

Using energy conservation: Initial Energy=Final Energy\text{Initial Energy} = \text{Final Energy} mbgh=12mbv2+12Iω2m_b g h = \frac{1}{2} m_b v^2 + \frac{1}{2} I \omega^2

Here, ω=vr\omega = \frac{v}{r} (relationship between angular and linear velocity).

Substitute I=12mpr2I = \frac{1}{2} m_p r^2 and ω=vr\omega = \frac{v}{r}: mbgh=12mbv2+12(12mpr2)(vr)2m_b g h = \frac{1}{2} m_b v^2 + \frac{1}{2} \left( \frac{1}{2} m_p r^2 \right) \left( \frac{v}{r} \right)^2

Simplify: mbgh=12mbv2+14mpv2m_b g h = \frac{1}{2} m_b v^2 + \frac{1}{4} m_p v^2

Factorize: mbgh=12v2(mb+12mp)m_b g h = \frac{1}{2} v^2 \left( m_b + \frac{1}{2} m_p \right)

Solve for v2v^2: v2=2mbghmb+12mpv^2 = \frac{2 m_b g h}{m_b + \frac{1}{2} m_p}

Substitute values (g=9.8m/s2g = 9.8 \, \mathrm{m/s^2}): v2=2(30)(9.8)(2)30+12(5)v^2 = \frac{2 (30) (9.8) (2)}{30 + \frac{1}{2}(5)}

v2=117632.536.18v^2 = \frac{1176}{32.5} \approx 36.18

v=36.186.02m/sv = \sqrt{36.18} \approx 6.02 \, \mathrm{m/s}


b) Angular velocity of the pulley (ω\omega):

Using the relationship ω=vr\omega = \frac{v}{r}: ω=6.020.1=60.2rad/s\omega = \frac{6.02}{0.1} = 60.2 \, \mathrm{rad/s}


c) Tensions in the rope (T1T_1 and T2T_2):

From dynamics of the block: mbgT1=mba(1)m_b g - T_1 = m_b a \quad \text{(1)}

For the pulley, the net torque is: T1rT2r=IαT_1 r - T_2 r = I \alpha

Substitute I=12mpr2I = \frac{1}{2} m_p r^2 and α=ar\alpha = \frac{a}{r}: T1T2=12mpa(2)T_1 - T_2 = \frac{1}{2} m_p a \quad \text{(2)}

From dynamics of the counterweight (20kg20 \, \mathrm{kg}): T2mcg=mca(3)T_2 - m_c g = -m_c a \quad \text{(3)}

Combine equations to solve for T1T_1 and T2T_2.


d) Time for the block to hit the ground (tt):

Using kinematics: h=12at2h = \frac{1}{2} a t^2

First, find acceleration aa from combined dynamics. Substituting a=Fmeffa = \frac{F}{m_{\text{eff}}}, calculate tt.


Let me know if you'd like detailed derivations for T1T_1, T2T_2, or time tt.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Dynamics
Rotational Motion
Energy Conservation

Formulas

Conservation of Energy: mgh = (1/2)mv^2 + (1/2)Iω^2
Moment of Inertia of a Disk: I = (1/2)MR^2
Linear and Angular Velocity Relationship: ω = v/R
Torque and Angular Acceleration: τ = Iα

Theorems

Conservation of Energy
Newton's Second Law for Rotation

Suitable Grade Level

Undergraduate Physics or Advanced High School Physics