Math Problem Statement

Using De Moivre's theorem, show that sin(5θ) = 16sin^5(θ) - 20sin^3(θ) + 5sin(θ).

Solution

Let's solve this problem using De Moivre's Theorem.

Problem:

We need to show that: sin(5θ)=16sin5θ20sin3θ+5sinθ\sin(5\theta) = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta

Solution:

De Moivre's Theorem states: (cosθ+isinθ)n=cos(nθ)+isin(nθ).(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta). For n=5n = 5, we expand (cosθ+isinθ)5(\cos\theta + i\sin\theta)^5: (cosθ+isinθ)5=cos(5θ)+isin(5θ).(\cos\theta + i\sin\theta)^5 = \cos(5\theta) + i\sin(5\theta). Using the Binomial Theorem, expand (cosθ+isinθ)5(\cos\theta + i\sin\theta)^5: (cosθ+isinθ)5=cos5θ+5cos4θ(isinθ)+10cos3θ(isinθ)2+10cos2θ(isinθ)3+5cosθ(isinθ)4+(isinθ)5.(\cos\theta + i\sin\theta)^5 = \cos^5\theta + 5\cos^4\theta(i\sin\theta) + 10\cos^3\theta(i\sin\theta)^2 + 10\cos^2\theta(i\sin\theta)^3 + 5\cos\theta(i\sin\theta)^4 + (i\sin\theta)^5. Simplify powers of ii (using i2=1,i3=i,i4=1i^2 = -1, i^3 = -i, i^4 = 1): =cos5θ+5icos4θsinθ10cos3θsin2θ10icos2θsin3θ+5cosθsin4θ+isin5θ.= \cos^5\theta + 5i\cos^4\theta\sin\theta - 10\cos^3\theta\sin^2\theta - 10i\cos^2\theta\sin^3\theta + 5\cos\theta\sin^4\theta + i\sin^5\theta. Group real and imaginary terms:

  • Real part: cos5θ10cos3θsin2θ+5cosθsin4θ.\cos^5\theta - 10\cos^3\theta\sin^2\theta + 5\cos\theta\sin^4\theta.
  • Imaginary part: 5cos4θsinθ10cos2θsin3θ+sin5θ.5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta. From De Moivre's theorem, the imaginary part gives sin(5θ)\sin(5\theta): sin(5θ)=5cos4θsinθ10cos2θsin3θ+sin5θ.\sin(5\theta) = 5\cos^4\theta\sin\theta - 10\cos^2\theta\sin^3\theta + \sin^5\theta.

Step 2: Express cos2θ\cos^2\theta in terms of sin2θ\sin^2\theta

Using cos2θ=1sin2θ\cos^2\theta = 1 - \sin^2\theta, substitute cos2θ\cos^2\theta and cos4θ=(1sin2θ)2\cos^4\theta = (1 - \sin^2\theta)^2: cos4θ=(1sin2θ)2=12sin2θ+sin4θ.\cos^4\theta = (1 - \sin^2\theta)^2 = 1 - 2\sin^2\theta + \sin^4\theta. Now substitute back into the equation for sin(5θ)\sin(5\theta): sin(5θ)=5(12sin2θ+sin4θ)sinθ10(1sin2θ)sin3θ+sin5θ.\sin(5\theta) = 5(1 - 2\sin^2\theta + \sin^4\theta)\sin\theta - 10(1 - \sin^2\theta)\sin^3\theta + \sin^5\theta.

Step 3: Expand and simplify

Expand the terms:

  1. First term: 5(12sin2θ+sin4θ)sinθ=5sinθ10sin3θ+5sin5θ.5(1 - 2\sin^2\theta + \sin^4\theta)\sin\theta = 5\sin\theta - 10\sin^3\theta + 5\sin^5\theta.
  2. Second term: 10(1sin2θ)sin3θ=10sin3θ+10sin5θ.-10(1 - \sin^2\theta)\sin^3\theta = -10\sin^3\theta + 10\sin^5\theta.
  3. Third term: sin5θ.\sin^5\theta.

Combine all terms: sin(5θ)=(5sinθ)+(10sin3θ10sin3θ)+(5sin5θ+10sin5θ+sin5θ).\sin(5\theta) = (5\sin\theta) + (-10\sin^3\theta - 10\sin^3\theta) + (5\sin^5\theta + 10\sin^5\theta + \sin^5\theta). sin(5θ)=5sinθ20sin3θ+16sin5θ.\sin(5\theta) = 5\sin\theta - 20\sin^3\theta + 16\sin^5\theta.

Final Result:

sin(5θ)=16sin5θ20sin3θ+5sinθ.\sin(5\theta) = 16\sin^5\theta - 20\sin^3\theta + 5\sin\theta.

This verifies the given equation.


Would you like me to expand further or clarify any step?

Related Questions:

  1. What is De Moivre's Theorem and how is it derived?
  2. How can we use cos2θ+sin2θ=1\cos^2\theta + \sin^2\theta = 1 in trigonometric expansions?
  3. What is the binomial theorem, and how does it apply to (a+b)n(a + b)^n?
  4. How can you derive cos(5θ)\cos(5\theta) using De Moivre’s Theorem?
  5. What are some practical applications of De Moivre’s Theorem?

Tip:

Always break down the powers of sinθ\sin\theta or cosθ\cos\theta into smaller terms using fundamental identities like cos2θ=1sin2θ\cos^2\theta = 1 - \sin^2\theta for simplifications.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Complex Numbers
Trigonometry
Binomial Expansion

Formulas

De Moivre's theorem: (cosθ + isinθ)^n = cos(nθ) + isin(nθ)
Trigonometric identity: cos^2θ + sin^2θ = 1
Binomial theorem for (a + b)^n

Theorems

De Moivre's theorem
Binomial theorem

Suitable Grade Level

Grades 11-12