Using De Moivre's theorem, show that sin(5θ) = 16sin^5(θ) - 20sin^3(θ) + 5sin(θ).
Solution
Let's solve this problem using De Moivre's Theorem.
Problem:
We need to show that:
sin(5θ)=16sin5θ−20sin3θ+5sinθ
Solution:
De Moivre's Theorem states:
(cosθ+isinθ)n=cos(nθ)+isin(nθ).
For n=5, we expand (cosθ+isinθ)5:
(cosθ+isinθ)5=cos(5θ)+isin(5θ).
Using the Binomial Theorem, expand (cosθ+isinθ)5:
(cosθ+isinθ)5=cos5θ+5cos4θ(isinθ)+10cos3θ(isinθ)2+10cos2θ(isinθ)3+5cosθ(isinθ)4+(isinθ)5.
Simplify powers of i (using i2=−1,i3=−i,i4=1):
=cos5θ+5icos4θsinθ−10cos3θsin2θ−10icos2θsin3θ+5cosθsin4θ+isin5θ.
Group real and imaginary terms:
Real part:
cos5θ−10cos3θsin2θ+5cosθsin4θ.
Imaginary part:
5cos4θsinθ−10cos2θsin3θ+sin5θ.
From De Moivre's theorem, the imaginary part gives sin(5θ):
sin(5θ)=5cos4θsinθ−10cos2θsin3θ+sin5θ.
Step 2: Express cos2θ in terms of sin2θ
Using cos2θ=1−sin2θ, substitute cos2θ and cos4θ=(1−sin2θ)2:
cos4θ=(1−sin2θ)2=1−2sin2θ+sin4θ.
Now substitute back into the equation for sin(5θ):
sin(5θ)=5(1−2sin2θ+sin4θ)sinθ−10(1−sin2θ)sin3θ+sin5θ.
Step 3: Expand and simplify
Expand the terms:
First term:
5(1−2sin2θ+sin4θ)sinθ=5sinθ−10sin3θ+5sin5θ.
Second term:
−10(1−sin2θ)sin3θ=−10sin3θ+10sin5θ.
Third term:
sin5θ.
Combine all terms:
sin(5θ)=(5sinθ)+(−10sin3θ−10sin3θ)+(5sin5θ+10sin5θ+sin5θ).sin(5θ)=5sinθ−20sin3θ+16sin5θ.
Final Result:
sin(5θ)=16sin5θ−20sin3θ+5sinθ.
This verifies the given equation.
Would you like me to expand further or clarify any step?
Related Questions:
What is De Moivre's Theorem and how is it derived?
How can we use cos2θ+sin2θ=1 in trigonometric expansions?
What is the binomial theorem, and how does it apply to (a+b)n?
How can you derive cos(5θ) using De Moivre’s Theorem?
What are some practical applications of De Moivre’s Theorem?
Tip:
Always break down the powers of sinθ or cosθ into smaller terms using fundamental identities like cos2θ=1−sin2θ for simplifications.
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Complex Numbers Trigonometry Binomial Expansion
Formulas
De Moivre's theorem: (cosθ + isinθ)^n = cos(nθ) + isin(nθ) Trigonometric identity: cos^2θ + sin^2θ = 1 Binomial theorem for (a + b)^n