Math Problem Statement

Let A be a nonempty set of real numbers. A number m ∈ A is a least element of A if x ≥ m for every x ∈ A. For example, every finite nonempty set of real numbers and N have a least element, while Z and the open interval (0, 1) of real numbers do not have a least element. A nonempty set S of real numbers is said to be well-ordered if every nonempty subset of S has a least element. (a) Show that if S is a nonempty set of real numbers and S does not have a least element, then S is not well-ordered. (b) Show that the closed interval [0, 1] of real numbers is not well-ordered (thereby showing that a set with a least element may not be well-ordered).

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set Theory
Order Relations
Real Numbers

Formulas

-

Theorems

Well-ordering principle
Least element property
Density of real numbers

Suitable Grade Level

Undergraduate