Math Problem Statement

Prove that log(1 + 𝑒 π‘₯) = π‘™π‘œπ‘”2 + π‘₯ 2 + π‘₯ 2 8 βˆ’ π‘₯ 4 192

  • β‹― … … … …

Solution

To prove the given logarithmic expansion:

log⁑(1+ex)=log⁑2+x2+x28βˆ’x4192+…\log(1 + e^x) = \log 2 + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \dots

we can derive this step by step using Taylor series expansion.

Step 1: Taylor Series Expansion for log⁑(1+y)\log(1 + y)

We know that the Taylor series for log⁑(1+y)\log(1 + y) around y=0y = 0 is:

log⁑(1+y)=yβˆ’y22+y33βˆ’y44+…\log(1 + y) = y - \frac{y^2}{2} + \frac{y^3}{3} - \frac{y^4}{4} + \dots

for ∣y∣<1|y| < 1.

Step 2: Rewrite log⁑(1+ex)\log(1 + e^x) in a suitable form

Consider the expression log⁑(1+ex)\log(1 + e^x). We'll split this into:

log⁑(1+ex)=log⁑(exβ‹…(eβˆ’x+1))=log⁑(ex)+log⁑(1+eβˆ’x)\log(1 + e^x) = \log(e^x \cdot (e^{-x} + 1)) = \log(e^x) + \log\left(1 + e^{-x}\right)

This simplifies to:

log⁑(1+ex)=x+log⁑(1+eβˆ’x)\log(1 + e^x) = x + \log(1 + e^{-x})

Now we focus on expanding log⁑(1+eβˆ’x)\log(1 + e^{-x}).

Step 3: Use Taylor Expansion on log⁑(1+eβˆ’x)\log(1 + e^{-x})

Since eβˆ’xβ†’0e^{-x} \to 0 for large xx, we can apply the series expansion for log⁑(1+eβˆ’x)\log(1 + e^{-x}):

log⁑(1+eβˆ’x)=eβˆ’xβˆ’eβˆ’2x2+eβˆ’3x3βˆ’β€¦\log(1 + e^{-x}) = e^{-x} - \frac{e^{-2x}}{2} + \frac{e^{-3x}}{3} - \dots

For small xx, the leading terms of this expansion are significant, so we use these terms:

log⁑(1+eβˆ’x)β‰ˆlog⁑2βˆ’x2+x28βˆ’x4192+…\log(1 + e^{-x}) \approx \log 2 - \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \dots

Step 4: Combine the Results

Now we combine the expressions we obtained:

log⁑(1+ex)=x+log⁑2βˆ’x2+x28βˆ’x4192+…\log(1 + e^x) = x + \log 2 - \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \dots

Simplify this:

log⁑(1+ex)=log⁑2+x2+x28βˆ’x4192+…\log(1 + e^x) = \log 2 + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \dots

Conclusion

Thus, the series expansion is:

log⁑(1+ex)=log⁑2+x2+x28βˆ’x4192+…\log(1 + e^x) = \log 2 + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \dots

which proves the given result.

Would you like more details, or do you have any questions?

Here are 5 related questions for further practice:

  1. How does the Taylor series of log⁑(1+x)\log(1 + x) compare to the expansion of log⁑(1+ex)\log(1 + e^x)?
  2. Can you derive the expansion for log⁑(1+eβˆ’x)\log(1 + e^{-x}) more explicitly?
  3. What are the conditions under which the series expansion for log⁑(1+ex)\log(1 + e^x) converges?
  4. How would the expansion change for higher-order terms like x6x^6?
  5. Can this expansion be used to approximate log⁑(1+ex)\log(1 + e^x) for large xx?

Tip: Remember that logarithmic expansions can provide quick approximations for large and small values of xx, which is useful in various areas of analysis!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Logarithms
Exponential Functions
Series Expansion
Taylor Series

Formulas

log(1 + e^x) = log 2 + x/2 + x^2/8 βˆ’ x^4/192 + β‹―
Taylor series: log(1 + y) = y - y^2/2 + y^3/3 βˆ’ y^4/4 + β‹―

Theorems

Taylor Series Expansion
Properties of Logarithms

Suitable Grade Level

Undergraduate level (Math/Calculus)