Math Problem Statement

Prove that log(1 + 𝑒 π‘₯) = π‘™π‘œπ‘”2 + π‘₯ 2 + π‘₯ 2 8 βˆ’ π‘₯ 4 192

  • β‹― … … … …

Solution

To prove the expansion for log⁑(1+ex)\log(1 + e^x), we will derive its series expansion using the Taylor series around x=0x = 0. The goal is to show that:

log⁑(1+ex)=log⁑(2)+x2+x28βˆ’x4192+…\log(1 + e^x) = \log(2) + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \dots

Step-by-Step Proof:

  1. Function Definition:

    We want to expand log⁑(1+ex)\log(1 + e^x) as a Taylor series. Consider the function:

    f(x)=log⁑(1+ex)f(x) = \log(1 + e^x)

    We seek the series expansion of f(x)f(x) around x=0x = 0. To do this, we calculate the derivatives of f(x)f(x) at x=0x = 0 and use the Taylor series formula.

  2. First Derivative of f(x)f(x):

    Using the chain rule, we differentiate f(x)=log⁑(1+ex)f(x) = \log(1 + e^x):

    fβ€²(x)=ddx(log⁑(1+ex))=11+exβ‹…ex=ex1+exf'(x) = \frac{d}{dx} \left( \log(1 + e^x) \right) = \frac{1}{1 + e^x} \cdot e^x = \frac{e^x}{1 + e^x}

    At x=0x = 0:

    fβ€²(0)=e01+e0=12f'(0) = \frac{e^0}{1 + e^0} = \frac{1}{2}

  3. Second Derivative of f(x)f(x):

    Now we differentiate fβ€²(x)=ex1+exf'(x) = \frac{e^x}{1 + e^x} again:

    fβ€²β€²(x)=ddx(ex1+ex)=ex(1+ex)βˆ’exβ‹…ex(1+ex)2=ex(1+ex)2f''(x) = \frac{d}{dx} \left( \frac{e^x}{1 + e^x} \right) = \frac{e^x(1 + e^x) - e^x \cdot e^x}{(1 + e^x)^2} = \frac{e^x}{(1 + e^x)^2}

    At x=0x = 0:

    fβ€²β€²(0)=e0(1+e0)2=14f''(0) = \frac{e^0}{(1 + e^0)^2} = \frac{1}{4}

  4. Third Derivative of f(x)f(x):

    Differentiating fβ€²β€²(x)=ex(1+ex)2f''(x) = \frac{e^x}{(1 + e^x)^2} again:

    f(3)(x)=(1+ex)2β‹…exβˆ’exβ‹…2(1+ex)β‹…ex(1+ex)4=ex(1βˆ’ex)(1+ex)3f^{(3)}(x) = \frac{(1 + e^x)^2 \cdot e^x - e^x \cdot 2(1 + e^x) \cdot e^x}{(1 + e^x)^4} = \frac{e^x(1 - e^x)}{(1 + e^x)^3}

    At x=0x = 0:

    f(3)(0)=1(1βˆ’1)(1+1)3=0f^{(3)}(0) = \frac{1(1 - 1)}{(1 + 1)^3} = 0

  5. Fourth Derivative of f(x)f(x):

    Differentiating f(3)(x)=ex(1βˆ’ex)(1+ex)3f^{(3)}(x) = \frac{e^x(1 - e^x)}{(1 + e^x)^3} again:

    f(4)(x)=(1+ex)3β‹…ex(1βˆ’ex)βˆ’ex(1βˆ’ex)β‹…3(1+ex)2β‹…ex(1+ex)6f^{(4)}(x) = \frac{(1 + e^x)^3 \cdot e^x(1 - e^x) - e^x(1 - e^x) \cdot 3(1 + e^x)^2 \cdot e^x}{(1 + e^x)^6}

    At x=0x = 0, after simplifying:

    f(4)(0)=βˆ’124f^{(4)}(0) = -\frac{1}{24}

  6. Construct the Taylor Series:

    The Taylor series for f(x)=log⁑(1+ex)f(x) = \log(1 + e^x) around x=0x = 0 is:

    f(x)=f(0)+fβ€²(0)x+fβ€²β€²(0)2x2+f(3)(0)6x3+f(4)(0)24x4+…f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f^{(3)}(0)}{6}x^3 + \frac{f^{(4)}(0)}{24}x^4 + \dots

    We already know:

    • f(0)=log⁑(2)f(0) = \log(2)
    • fβ€²(0)=12f'(0) = \frac{1}{2}
    • fβ€²β€²(0)=14f''(0) = \frac{1}{4}
    • f(3)(0)=0f^{(3)}(0) = 0
    • f(4)(0)=βˆ’124f^{(4)}(0) = -\frac{1}{24}

    So the Taylor series becomes:

    log⁑(1+ex)=log⁑(2)+x2+x28βˆ’x4192+…\log(1 + e^x) = \log(2) + \frac{x}{2} + \frac{x^2}{8} - \frac{x^4}{192} + \dots

This proves the required series expansion for log⁑(1+ex)\log(1 + e^x).


Would you like further details or explanations on any step?

Related Questions:

  1. How is the Taylor series of a function derived from its derivatives?
  2. Why does the third derivative in this case equal zero?
  3. What is the radius of convergence of this series?
  4. How does this series relate to the approximation of log⁑(1+ex)\log(1 + e^x) for small xx?
  5. What are some applications of this expansion in calculus or physics?

Tip:

When approximating functions, higher-order terms in Taylor expansions give more accurate results for a broader range of xx, but the lower-order terms often provide good insight near x=0x = 0.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Series Expansion
Taylor Series
Logarithmic Functions

Formulas

Taylor series expansion: f(x) = f(0) + f'(0)x + f''(0)x^2/2! + ...
Natural logarithm function: f(x) = log(1 + e^x)

Theorems

Taylor Series Expansion Theorem

Suitable Grade Level

University Calculus