Math Problem Statement
Jika A⃗ = A1i⃗ + A2j⃗ dan B⃗⃗ = B1i⃗ + B2j⃗ adalah dua vektor pada bidang dengan system koordinat tegak lurus XY dan jikadidefinisikan⃗A⃗.B⃗⃗ = A1B1 + A2B2 maka A⃗.B⃗⃗ = |A⃗||B⃗⃗|cos θ dimana θ adalah sudut yang dibentuk oleh A⃗ dan B⃗⃗, 0 ≤ θ ≤ π , buktikanlah!
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Vector Algebra
Dot Product
Trigonometry
Formulas
A⃗ . B⃗⃗ = A1B1 + A2B2
|A⃗| = √(A1^2 + A2^2)
|B⃗⃗| = √(B1^2 + B2^2)
A⃗ . B⃗⃗ = |A⃗||B⃗⃗| cos θ
Theorems
Dot Product Theorem
Cosine Rule for Vectors
Suitable Grade Level
Grades 10-12
Related Recommendation
Dot Product and Angle Between Vectors: A = Bì + 45 + 6k and B = 4ì + 5î - gk
Vector Dot Product: Finding Angle and Magnitude of A with B = 5.00 m
Solving Vector Dot Products: Angle Between A and B, and Magnitude of A
Vector Dot Product Calculation for Given Magnitudes and Angles
Calculate Angle Between Vectors (5, 0, -4) and (-2, 5, -1) in Radians