Math Problem Statement

for 5 marks

If A = {a, b, c, d, e, f}, B = {c, d, e}, and C = {d, e, f, g}, show that: (a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), (b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).

Solution

Let's solve the given problems step by step.

Problem 15: Matrix Subtraction ABA - B

We have matrices:

A=[134216]A = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 1 & 6 \end{bmatrix} B=[221132]B = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & -2 \end{bmatrix}

Solution for ABA - B:

Subtract corresponding elements:

AB=[12324121136(2)]A - B = \begin{bmatrix} 1 - 2 & 3 - 2 & 4 - 1 \\ 2 - 1 & 1 - 3 & 6 - (-2) \end{bmatrix}

=[113128]= \begin{bmatrix} -1 & 1 & 3 \\ 1 & -2 & 8 \end{bmatrix}

So,
AB=[113128]A - B = \begin{bmatrix} -1 & 1 & 3 \\ 1 & -2 & 8 \end{bmatrix}


Problem 16: Set Identities Verification

Given sets:
A={a,b,c,d,e,f},B={c,d,e},C={d,e,f,g}A = \{a, b, c, d, e, f\}, \quad B = \{c, d, e\}, \quad C = \{d, e, f, g\}

We need to prove:

(a) A(BC)=(AB)(AC)A \cup (B \cap C) = (A \cup B) \cap (A \cup C)

  1. Find BCB \cap C: Elements common in BB and CC.
    BC={c,d,e}{d,e,f,g}={d,e}B \cap C = \{c, d, e\} \cap \{d, e, f, g\} = \{d, e\}

  2. Compute A(BC)A \cup (B \cap C):
    A{d,e}={a,b,c,d,e,f}A \cup \{d, e\} = \{a, b, c, d, e, f\}

  3. Compute ABA \cup B:
    AB={a,b,c,d,e,f}A \cup B = \{a, b, c, d, e, f\}

  4. Compute ACA \cup C:
    AC={a,b,c,d,e,f,g}A \cup C = \{a, b, c, d, e, f, g\}

  5. Compute (AB)(AC)(A \cup B) \cap (A \cup C):
    {a,b,c,d,e,f}{a,b,c,d,e,f,g}={a,b,c,d,e,f}\{a, b, c, d, e, f\} \cap \{a, b, c, d, e, f, g\} = \{a, b, c, d, e, f\}

Since both sides are equal, the identity is proved.


(b) A(BC)=(AB)(AC)A \cap (B \cup C) = (A \cap B) \cup (A \cap C)

  1. Compute BCB \cup C:
    BC={c,d,e}{d,e,f,g}={c,d,e,f,g}B \cup C = \{c, d, e\} \cup \{d, e, f, g\} = \{c, d, e, f, g\}

  2. Compute A(BC)A \cap (B \cup C):
    {a,b,c,d,e,f}{c,d,e,f,g}={c,d,e,f}\{a, b, c, d, e, f\} \cap \{c, d, e, f, g\} = \{c, d, e, f\}

  3. Compute ABA \cap B:
    {a,b,c,d,e,f}{c,d,e}={c,d,e}\{a, b, c, d, e, f\} \cap \{c, d, e\} = \{c, d, e\}

  4. Compute ACA \cap C:
    {a,b,c,d,e,f}{d,e,f,g}={d,e,f}\{a, b, c, d, e, f\} \cap \{d, e, f, g\} = \{d, e, f\}

  5. Compute (AB)(AC)(A \cap B) \cup (A \cap C):
    {c,d,e}{d,e,f}={c,d,e,f}\{c, d, e\} \cup \{d, e, f\} = \{c, d, e, f\}

Since both sides are equal, the identity is proved.


Final Answers:

  1. AB=[113128]A - B = \begin{bmatrix} -1 & 1 & 3 \\ 1 & -2 & 8 \end{bmatrix}
  2. The given set identities are proved.

Would you like further explanation or details?

Related Questions:

  1. How do you find the union and intersection of sets?
  2. What is the general formula for matrix subtraction?
  3. How can Venn diagrams help visualize set operations?
  4. What are some real-life applications of set theory?
  5. How do we verify set identities algebraically?

Tip:

When verifying set identities, always compute both sides separately and compare the results!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set Theory
Union and Intersection of Sets
Proving Set Identities

Formulas

Union of Sets: A ∪ B = {x | x ∈ A or x ∈ B}
Intersection of Sets: A ∩ B = {x | x ∈ A and x ∈ B}
Distributive Law of Sets

Theorems

Distributive Laws in Set Theory

Suitable Grade Level

Grade 9-12