Math Problem Statement

Montrer que f est une fonction impaire. Montrer que 1/2 est la valeur maximale de f sur [0; +∞[. Soient a et b deux éléments distincts de R+, montrer que T(a,b) = (1 - ab) / ((a² + 1)(b² + 1)). Montrer que f est strictement croissante sur [0, 1] et strictement décroissante sur [1, +∞[. Dresser le tableau de variations de f sur R. En déduire que pour tout x de l'intervalle [2, 4], on a: 5/2 ≤ x + 1/x ≤ 17/4.

Solution

I see you've uploaded an image containing several math problems, written in French. Here's a translation and breakdown of the problems presented:

  1. Montrer que ff est une fonction impaire.

    • Show that ff is an odd function.
  2. Montrer que 12\frac{1}{2} est la valeur maximale de ff sur [0;+[[0; +\infty[.

    • Show that 12\frac{1}{2} is the maximum value of ff on the interval [0;+[[0; +\infty[.
  3. Soient aa et bb deux éléments distincts de R+\mathbb{R}^+, montrer que : T(a,b)=1ab(a2+1)(b2+1).T(a, b) = \frac{1 - ab}{(a^2 + 1)(b^2 + 1)}.

    • Let aa and bb be two distinct elements of R+\mathbb{R}^+ (the set of positive real numbers), show that: T(a,b)=1ab(a2+1)(b2+1).T(a, b) = \frac{1 - ab}{(a^2 + 1)(b^2 + 1)}.
  4. Montrer que ff est strictement croissante sur [0,1][0, 1] et strictement décroissante sur [1,+[[1, +\infty[.

    • Show that ff is strictly increasing on [0,1][0, 1] and strictly decreasing on [1,+[[1, +\infty[.
  5. Dresser le tableau de variations de ff sur R\mathbb{R}.

    • Draw the variation table of ff on R\mathbb{R} (the set of real numbers).
  6. En déduire que pour tout xx de l'intervalle [2,4][2, 4], on a : 52x+1x174.\frac{5}{2} \leq x + \frac{1}{x} \leq \frac{17}{4}.

    • Deduce that for every xx in the interval [2,4][2, 4], we have: 52x+1x174.\frac{5}{2} \leq x + \frac{1}{x} \leq \frac{17}{4}.

Would you like me to work through one of these problems, or clarify any specific part?

Here are some follow-up questions for you to consider:

  1. Do you want a detailed explanation of how to prove ff is an odd function?
  2. Should we explore the maximum value of ff over the specified interval?
  3. Would you like help understanding the behavior of the function T(a,b)T(a, b)?
  4. Should we discuss why ff is strictly increasing and decreasing over certain intervals?
  5. Would you like me to construct the variation table for ff?

Tip: When tackling problems involving function variations, always start by checking the first derivative to identify critical points and intervals of monotonicity.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Odd and Even Functions
Maximization
Real Analysis
Monotonicity
Inequalities

Formulas

T(a, b) = (1 - ab) / ((a² + 1)(b² + 1))
x + 1/x

Theorems

Odd function: f(-x) = -f(x)
Maximization: f reaches its maximum at 1/2 in the given domain

Suitable Grade Level

Undergraduate Level (Calculus and Analysis)