Math Problem Statement

Let u⃗ =⎡⎣⎢2−25⎤⎦⎥ and v⃗ =⎡⎣⎢−1−44⎤⎦⎥ .

Calculate projv⃗ u⃗ :

Solution

To calculate the projection of u onto v (denoted as projvu\text{proj}_{\mathbf{v}} \mathbf{u}), we use the formula:

projvu=uvvvv\text{proj}_{\mathbf{v}} \mathbf{u} = \frac{\mathbf{u} \cdot \mathbf{v}}{\mathbf{v} \cdot \mathbf{v}} \mathbf{v}

Step 1: Calculate the dot product uv\mathbf{u} \cdot \mathbf{v}

The vectors are:

u=[225],v=[144]\mathbf{u} = \begin{bmatrix} 2 \\ -2 \\ 5 \end{bmatrix}, \quad \mathbf{v} = \begin{bmatrix} -1 \\ -4 \\ 4 \end{bmatrix}

Now, calculate the dot product uv\mathbf{u} \cdot \mathbf{v}:

uv=(2)(1)+(2)(4)+(5)(4)=2+8+20=26\mathbf{u} \cdot \mathbf{v} = (2)(-1) + (-2)(-4) + (5)(4) = -2 + 8 + 20 = 26

Step 2: Calculate vv\mathbf{v} \cdot \mathbf{v}

The dot product vv\mathbf{v} \cdot \mathbf{v} is:

vv=(1)2+(4)2+(4)2=1+16+16=33\mathbf{v} \cdot \mathbf{v} = (-1)^2 + (-4)^2 + (4)^2 = 1 + 16 + 16 = 33

Step 3: Calculate the projection

Now, use the formula:

projvu=2633v\text{proj}_{\mathbf{v}} \mathbf{u} = \frac{26}{33} \mathbf{v}

Substitute v=[144]\mathbf{v} = \begin{bmatrix} -1 \\ -4 \\ 4 \end{bmatrix}:

projvu=2633[144]\text{proj}_{\mathbf{v}} \mathbf{u} = \frac{26}{33} \begin{bmatrix} -1 \\ -4 \\ 4 \end{bmatrix}

This gives:

projvu=[2633(1)2633(4)2633(4)]=[26331043310433]\text{proj}_{\mathbf{v}} \mathbf{u} = \begin{bmatrix} \frac{26}{33}(-1) \\ \frac{26}{33}(-4) \\ \frac{26}{33}(4) \end{bmatrix} = \begin{bmatrix} -\frac{26}{33} \\ -\frac{104}{33} \\ \frac{104}{33} \end{bmatrix}

Thus, the projection is:

projvu=[26331043310433]\text{proj}_{\mathbf{v}} \mathbf{u} = \begin{bmatrix} -\frac{26}{33} \\ -\frac{104}{33} \\ \frac{104}{33} \end{bmatrix}

Would you like further details or have any questions?

Here are 5 related questions:

  1. How do we calculate the magnitude of the projection vector?
  2. What is the geometric interpretation of the vector projection?
  3. How do dot products relate to vector projections?
  4. What is the angle between the vectors u and v?
  5. How do we calculate the orthogonal projection?

Tip: Always verify the dot product calculations when working with projections, as small errors can affect the result significantly!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Vector Projections
Dot Products

Formulas

Projection formula: proj_v u = (u · v / v · v) v
Dot product: u · v = u1 * v1 + u2 * v2 + u3 * v3

Theorems

Vector Projection Theorem

Suitable Grade Level

Grades 10-12