Math Problem Statement
实数 a,b 满足 $a+b \ge 3$. 求证: \n1. 证明:$2a^2 + 2b^2 \ge a+b$ \n2. 证明:$|a-2b^2|+|b-2a^2| \ge 6$
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Inequalities
Absolute Value
Quadratic Functions
Algebra
Formulas
$2a^2 + 2b^2 - (a+b)$
$|a - 2b^2| + |b - 2a^2|$
Arithmetic Mean-Quadratic Mean (AM-QM) Inequality
Theorems
AM-QM Inequality
Properties of Absolute Value
Suitable Grade Level
Grades 10-12
Related Recommendation
Prove Algebraic Inequalities with Real Numbers a^2 + b^2 + c^2 = 2
Proving the Inequality a + b + c - abc ≤ 2 under a² + b² + c² = 2
Proof of Inequality: a^2 + b^2 + 2 ≥ (a+1)(b+1)
Proof and Examination of Inequality b/a + a/b ≥ 2
Proving |a + b| ≤ √2 Given a² + b² = 1 Using Algebraic and Geometric Concepts