Math Problem Statement

Prove DeMorgan’s law: (𝐴 βˆͺ 𝐡) Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ…Μ… = π΄Μ…βˆ© 𝐡̅

Solution

DeMorgan's Law states that the complement of the union of two sets is equal to the intersection of their complements:

AβˆͺBβ€Ύ=Aβ€Ύβˆ©Bβ€Ύ.\overline{A \cup B} = \overline{A} \cap \overline{B}.

Proof:

We will prove this using set theory and logic equivalences.


Definitions:

  1. Set complement: Aβ€Ύ={x∣xβˆ‰A}\overline{A} = \{x \mid x \notin A\}.
  2. Set union: AβˆͺB={x∣x∈A or x∈B}A \cup B = \{x \mid x \in A \text{ or } x \in B\}.
  3. Set intersection: A∩B={x∣x∈A and x∈B}A \cap B = \{x \mid x \in A \text{ and } x \in B\}.

To prove AβˆͺBβ€Ύ=Aβ€Ύβˆ©Bβ€Ύ\overline{A \cup B} = \overline{A} \cap \overline{B}, we show:

  1. x∈AβˆͺBβ€Ύβ€…β€ŠβŸΉβ€…β€Šx∈Aβ€Ύβˆ©Bβ€Ύx \in \overline{A \cup B} \implies x \in \overline{A} \cap \overline{B},
  2. x∈Aβ€Ύβˆ©Bβ€Ύβ€…β€ŠβŸΉβ€…β€Šx∈AβˆͺBβ€Ύx \in \overline{A} \cap \overline{B} \implies x \in \overline{A \cup B}.

Part 1: Show AβˆͺBβ€ΎβŠ†Aβ€Ύβˆ©Bβ€Ύ\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}.

Assume x∈AβˆͺBβ€Ύx \in \overline{A \cup B}.
This means xβˆ‰AβˆͺBx \notin A \cup B.
By definition of union, xβˆ‰AβˆͺBβ€…β€ŠβŸΉβ€…β€Šxβˆ‰A and xβˆ‰Bx \notin A \cup B \implies x \notin A \text{ and } x \notin B.

Thus: x∈Aβ€Ύ and x∈Bβ€Ύ.x \in \overline{A} \text{ and } x \in \overline{B}.

Therefore, x∈Aβ€Ύβˆ©Bβ€Ύx \in \overline{A} \cap \overline{B}.


Part 2: Show Aβ€Ύβˆ©Bβ€ΎβŠ†AβˆͺBβ€Ύ\overline{A} \cap \overline{B} \subseteq \overline{A \cup B}.

Assume x∈Aβ€Ύβˆ©Bβ€Ύx \in \overline{A} \cap \overline{B}.
This means x∈Aβ€Ύx \in \overline{A} and x∈Bβ€Ύx \in \overline{B}, or equivalently:
xβˆ‰Ax \notin A and xβˆ‰Bx \notin B.

By definition of union: xβˆ‰A and xβˆ‰Bβ€…β€ŠβŸΉβ€…β€Šxβˆ‰AβˆͺB.x \notin A \text{ and } x \notin B \implies x \notin A \cup B.

Thus, x∈AβˆͺBβ€Ύx \in \overline{A \cup B}.


Conclusion:

Since we have shown both: AβˆͺBβ€ΎβŠ†Aβ€Ύβˆ©Bβ€Ύ,\overline{A \cup B} \subseteq \overline{A} \cap \overline{B}, and: Aβ€Ύβˆ©Bβ€ΎβŠ†AβˆͺBβ€Ύ,\overline{A} \cap \overline{B} \subseteq \overline{A \cup B},

we conclude: AβˆͺBβ€Ύ=Aβ€Ύβˆ©Bβ€Ύ.\overline{A \cup B} = \overline{A} \cap \overline{B}.


Would you like details on a related example or further explanation?


Follow-up Questions:

  1. How does DeMorgan's law apply to Boolean algebra?
  2. What is the analogous form of DeMorgan's law for intersections?
  3. Can you prove DeMorgan's law using a Venn diagram?
  4. How does DeMorgan's law generalize for more than two sets?
  5. How is DeMorgan's law used in computer science for logical negation?

Tip:

DeMorgan's laws are essential for simplifying logical expressions, particularly in programming and circuit design!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Set Theory
Logical Equivalences

Formulas

Complement of a set: 𝐴̅ = {x | x βˆ‰ 𝐴}
Union of sets: 𝐴 βˆͺ 𝐡 = {x | x ∈ 𝐴 or x ∈ 𝐡}
Intersection of sets: 𝐴 ∩ 𝐡 = {x | x ∈ 𝐴 and x ∈ 𝐡}

Theorems

DeMorgan's Laws

Suitable Grade Level

Undergraduate or Advanced High School