Math Problem Statement

Prove using the Levi-Civita Tensor/Kroenecker Delta that: (AxB)x(CxD) = (A.BxD).C-(A.BxC).D

Solution

To prove the vector identity (A×B)×(C×D)=(AB×D)C(AB×C)D(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}) = (\mathbf{A} \cdot \mathbf{B} \times \mathbf{D}) \mathbf{C} - (\mathbf{A} \cdot \mathbf{B} \times \mathbf{C}) \mathbf{D}, we can use the Levi-Civita tensor εijk\varepsilon_{ijk} and Kronecker delta δij\delta_{ij}. Below is a step-by-step proof using these tools.


1. Expand each cross product in Levi-Civita notation

Cross product using the Levi-Civita symbol:

For two vectors A×B\mathbf{A} \times \mathbf{B}, the ii-th component is given by: (A×B)i=εijkAjBk(\mathbf{A} \times \mathbf{B})_i = \varepsilon_{ijk} A_j B_k where the Levi-Civita symbol εijk\varepsilon_{ijk} is 1 or -1 depending on the permutation of indices, and 0 if any two indices are repeated.

Similarly, for the nested cross product (A×B)×(C×D)(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D}), the ii-th component is: [(A×B)×(C×D)]i=εilm(A×B)l(C×D)m[(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D})]_i = \varepsilon_{ilm} (\mathbf{A} \times \mathbf{B})_l (\mathbf{C} \times \mathbf{D})_m Using the definition of cross products for each term: (A×B)l=εlpqApBq,(C×D)m=εmrsCrDs(\mathbf{A} \times \mathbf{B})_l = \varepsilon_{lpq} A_p B_q, \quad (\mathbf{C} \times \mathbf{D})_m = \varepsilon_{mrs} C_r D_s Thus: [(A×B)×(C×D)]i=εilmεlpqApBqεmrsCrDs[(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D})]_i = \varepsilon_{ilm} \varepsilon_{lpq} A_p B_q \varepsilon_{mrs} C_r D_s


2. Use the Levi-Civita identity

We now use the Levi-Civita contraction identity: εilmεlpq=δipδmqδiqδmp\varepsilon_{ilm} \varepsilon_{lpq} = \delta_{ip} \delta_{mq} - \delta_{iq} \delta_{mp} Substitute this into the expression: [(A×B)×(C×D)]i=(δipδmqδiqδmp)ApBqεmrsCrDs[(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D})]_i = (\delta_{ip} \delta_{mq} - \delta_{iq} \delta_{mp}) A_p B_q \varepsilon_{mrs} C_r D_s Distribute the terms: [(A×B)×(C×D)]i=δipδmqApBqεmrsCrDsδiqδmpApBqεmrsCrDs[(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \times \mathbf{D})]_i = \delta_{ip} \delta_{mq} A_p B_q \varepsilon_{mrs} C_r D_s - \delta_{iq} \delta_{mp} A_p B_q \varepsilon_{mrs} C_r D_s


3. Simplify the expression

Using the properties of the Kronecker delta:

  1. δipAp=Ai\delta_{ip} A_p = A_i
  2. δmqBq=Bm\delta_{mq} B_q = B_m
  3. δiqBq=Bi\delta_{iq} B_q = B_i
  4. δmpAp=Am\delta_{mp} A_p = A_m

Thus, the first term becomes: AiBmεmrsCrDs=Ai(B×D)sCrA_i B_m \varepsilon_{mrs} C_r D_s = A_i (\mathbf{B} \times \mathbf{D})_s C_r

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Calculus
Tensor Notation
Levi-Civita Symbol
Kronecker Delta

Formulas

(A × B)_i = ε_ijk A_j B_k
ε_ijk ε_ipq = δ_jp δ_kq - δ_jq δ_kp

Theorems

Levi-Civita Contraction Identity

Suitable Grade Level

University Level - Advanced Mathematics or Physics