Math Problem Statement

  1. 交代記号 ϵijk について考える. (a) 次の恒等式を証明せよ. ∑ 3 k=1 ϵijkϵpqk = δipδjq − δiqδjp (b) 上記の恒等式を用いて,以下を正規直交座標系の成分によって証明せよ. a × (b × c) = (a · c)b − (a · b)c

Solution

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Levi-Civita symbol
Kronecker delta
Vector calculus
Cross product
Dot product

Formulas

∑₃ₖ₌₁ ϵᵢⱼₖϵₚᵩₖ = δᵢₚδⱼᵩ − δᵢᵩδⱼₚ
a × (b × c) = (a · c)b − (a · b)c

Theorems

Levi-Civita symbol identity
Kronecker delta properties
Vector triple product identity

Suitable Grade Level

Undergraduate level