Math Problem Statement
- 交代記号 ϵijk について考える. (a) 次の恒等式を証明せよ. ∑ 3 k=1 ϵijkϵpqk = δipδjq − δiqδjp (b) 上記の恒等式を用いて,以下を正規直交座標系の成分によって証明せよ. a × (b × c) = (a · c)b − (a · b)c
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Levi-Civita symbol
Kronecker delta
Vector calculus
Cross product
Dot product
Formulas
∑₃ₖ₌₁ ϵᵢⱼₖϵₚᵩₖ = δᵢₚδⱼᵩ − δᵢᵩδⱼₚ
a × (b × c) = (a · c)b − (a · b)c
Theorems
Levi-Civita symbol identity
Kronecker delta properties
Vector triple product identity
Suitable Grade Level
Undergraduate level
Related Recommendation
Proof of the Vector Triple Product Identity Using Epsilon Tensors
Proof of (AxB)x(CxD) Using Levi-Civita Tensor and Kronecker Delta
Proving the Vector Triple Product Identity in ℝ³
Tensor Identity: Levi-Civita Symbol and Kronecker Delta
Cylindrical Coordinate Transformation and Vector Triple Product Identity