Math Problem Statement
Un piloto, volando horizontalmente a 500 m de altura y 1080 km/h, lanza una bomba. Calcular: a) ¿Cuánto tarda en oír la explosión? b) ¿A qué distancia se encontraba el objetivo?. resuelve este ejercicio sin tener en cuenta la velocidad del sonido en el aire
Solution
Para resolver este problema, vamos a dividirlo en dos partes:
Datos del problema:
- Altura de lanzamiento (h): 500 m
- Velocidad horizontal del piloto (v): 1080 km/h
- Aceleración debida a la gravedad (g): 9.8 m/s²
Primero, convertimos la velocidad a metros por segundo:
Parte a) Tiempo que tarda en caer la bomba
La bomba cae desde una altura , por lo que el tiempo de caída se calcula con la fórmula de caída libre: Despejamos :
Sustituyendo los valores:
Entonces, la bomba tarda aproximadamente 10.1 segundos en alcanzar el suelo.
Parte b) Distancia horizontal al objetivo
Dado que el piloto y la bomba tienen la misma velocidad horizontal de 300 m/s, la distancia horizontal al objetivo es: Sustituyendo el tiempo de caída calculado:
Entonces, la distancia al objetivo es aproximadamente 3030 metros.
¿Deseas más detalles o tienes alguna duda?
Preguntas relacionadas:
- ¿Cómo cambiaría la distancia horizontal si la altura de lanzamiento fuera mayor?
- ¿Qué pasaría si se considera la resistencia del aire en este cálculo?
- ¿Cómo afectaría una velocidad horizontal diferente en la distancia al objetivo?
- ¿Cómo se vería afectado el tiempo de caída si la aceleración de la gravedad cambiara?
- ¿Qué otras fuerzas actuarían sobre la bomba si el vuelo no fuera horizontal?
Tip: Al convertir unidades, asegúrate siempre de que el tiempo, distancia, y velocidad sean coherentes entre sí (e.g., m/s, s, m).
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Kinematics
Projectile Motion
Free Fall
Formulas
Velocity conversion from km/h to m/s: v = (1080 * 1000) / 3600
Free fall time: h = (1/2) * g * t^2
Horizontal distance: x = v * t
Theorems
Equations of Motion under Uniform Acceleration
Suitable Grade Level
Grades 10-12
Related Recommendation
Calculate Horizontal Distance for Package Drop from Aircraft
Calculating Time for a Package Dropped from a Helicopter in Vertical Motion
Projectile Motion: Calculating Fall Time and Horizontal Velocity of a Toy Car
Projectile Motion Problem: Airplane Dropping Care Package
Projectile Motion in Baseball: Calculating Velocity, Speed, and Time Using Parametric Equations