Math Problem Statement
Owen inspects a batch of products by sampling 4 of them without replacement. If at least one of the products is defective in the sample, the whole batch is sent back.
Owen doesn't know it, but in the batch he is inspecting now, there are 100 products and 12 are defective. If he samples 4 products from this batch without replacement,what is the probability that...
a) All of the products in the sample will be defective? 0.00Correct
b) None of the products in the sample are defective?
c) At least one of the products is defective and the whole batch is sent back?
Round your answers to 2 decimal places.
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Probability
Combinatorics
Sampling without replacement
Formulas
Combination formula: C(n, k) = n! / (k!(n-k)!)
P(none defective) = C(88, 4) / C(100, 4)
P(at least one defective) = 1 - P(none defective)
Theorems
Complement Rule in Probability
Suitable Grade Level
Grades 9-12
Related Recommendation
Calculating Probability of Defective Components in a Sample
Probability of Selecting Defective Capacitors in a Shipment
Probability of Defective Televisions in a Random Selection
Probability of Selecting Defective Items: Hypergeometric Distribution Example
Calculating the Probability of Defective Generators in a Sample of 6