Math Problem Statement

Let π‘₯1 and π‘₯2 be two independent R.V.S having a poisson distribution with parameters πœ†1 and πœ†2.

Find the probability distribution function of Y = π‘₯1 + π‘₯2.

Solution

Let X1X_1 and X2X_2 be two independent random variables (R.V.s), where X1X_1 follows a Poisson distribution with parameter Ξ»1\lambda_1 and X2X_2 follows a Poisson distribution with parameter Ξ»2\lambda_2. That is:

X1∼Poisson(λ1)X_1 \sim \text{Poisson}(\lambda_1) X2∼Poisson(λ2)X_2 \sim \text{Poisson}(\lambda_2)

The probability mass function (PMF) of a Poisson-distributed random variable XX with parameter Ξ»\lambda is given by:

P(X=k)=Ξ»keβˆ’Ξ»k!,k=0,1,2,…P(X = k) = \frac{\lambda^k e^{-\lambda}}{k!}, \quad k = 0, 1, 2, \dots

Now, let Y=X1+X2Y = X_1 + X_2. We need to find the probability distribution function of YY.

Step 1: Determine the PMF of YY.

Since X1X_1 and X2X_2 are independent, the probability generating function of Y=X1+X2Y = X_1 + X_2 can be obtained by the product of the generating functions of X1X_1 and X2X_2.

The probability generating function of a Poisson random variable XX with parameter Ξ»\lambda is given by:

GX(t)=E(tX)=eΞ»(tβˆ’1)G_X(t) = \mathbb{E}(t^X) = e^{\lambda(t-1)}

Thus, the generating function of YY is:

GY(t)=GX1(t)β‹…GX2(t)=eΞ»1(tβˆ’1)β‹…eΞ»2(tβˆ’1)=e(Ξ»1+Ξ»2)(tβˆ’1)G_Y(t) = G_{X_1}(t) \cdot G_{X_2}(t) = e^{\lambda_1(t-1)} \cdot e^{\lambda_2(t-1)} = e^{(\lambda_1 + \lambda_2)(t-1)}

Step 2: Identify the Distribution of YY.

The generating function GY(t)=e(Ξ»1+Ξ»2)(tβˆ’1)G_Y(t) = e^{(\lambda_1 + \lambda_2)(t-1)} corresponds to a Poisson distribution with parameter Ξ»1+Ξ»2\lambda_1 + \lambda_2.

Therefore, YY follows a Poisson distribution with parameter Ξ»1+Ξ»2\lambda_1 + \lambda_2. This means:

Y∼Poisson(λ1+λ2)Y \sim \text{Poisson}(\lambda_1 + \lambda_2)

Conclusion:

The probability distribution function of Y=X1+X2Y = X_1 + X_2 is:

P(Y=k)=(Ξ»1+Ξ»2)keβˆ’(Ξ»1+Ξ»2)k!,k=0,1,2,…P(Y = k) = \frac{(\lambda_1 + \lambda_2)^k e^{-(\lambda_1 + \lambda_2)}}{k!}, \quad k = 0, 1, 2, \dots

Would you like more details or have any questions?


Relative Questions:

  1. How does the independence of X1X_1 and X2X_2 affect the distribution of YY?
  2. What would happen if X1X_1 and X2X_2 were not independent?
  3. How can the result be generalized for the sum of more than two independent Poisson random variables?
  4. Can the sum of two Poisson-distributed random variables ever be non-Poisson?
  5. How does the convolution of probability distributions relate to this problem?

Tip: When dealing with sums of independent random variables, consider using generating functions or moment-generating functions to identify the resulting distribution.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Probability Theory
Poisson Distribution
Generating Functions

Formulas

Poisson distribution PMF
Generating function for Poisson distribution

Theorems

-

Suitable Grade Level

Advanced