Math Problem Statement

Suppose that N is a Poisson random variable with parameter λ. The problem involves finding the generating function of N, the generating function of a sum of independent random variables S = X1 + X2 + ... + XN, and determining the distribution of S.

Solution

Let us solve the problem step-by-step:


(i) Finding the Generating Function of NN:

Given NPoisson(λ)N \sim \text{Poisson}(\lambda), the probability mass function of NN is: P(N=n)=λnn!eλ.P(N = n) = \frac{\lambda^n}{n!} e^{-\lambda}.

The generating function GN(t)=E(tN)G_N(t) = E(t^N) is: GN(t)=n=0P(N=n)tn=n=0λnn!eλtn.G_N(t) = \sum_{n=0}^\infty P(N = n) t^n = \sum_{n=0}^\infty \frac{\lambda^n}{n!} e^{-\lambda} t^n.

Factor eλe^{-\lambda} outside the summation: GN(t)=eλn=0(λt)nn!.G_N(t) = e^{-\lambda} \sum_{n=0}^\infty \frac{(\lambda t)^n}{n!}.

The series n=0xnn!\sum_{n=0}^\infty \frac{x^n}{n!} is the Taylor expansion of exe^x. Substituting x=λtx = \lambda t, we get: GN(t)=eλeλt=eλ(t1).G_N(t) = e^{-\lambda} e^{\lambda t} = e^{\lambda (t-1)}.


(ii) Generating Function of S=X1+X2++XNS = X_1 + X_2 + \cdots + X_N:

Each XiX_i is independent and identical, with generating function: GX(t)=12+12t.G_X(t) = \frac{1}{2} + \frac{1}{2} t.

Using the property of the Poisson distribution and generating functions: GS(t)=GN(GX(t)).G_S(t) = G_N(G_X(t)).

Substituting GN(t)=eλ(t1)G_N(t) = e^{\lambda (t-1)} and GX(t)=12+12tG_X(t) = \frac{1}{2} + \frac{1}{2}t: GS(t)=GN(GX(t))=eλ(GX(t)1)=eλ(12+12t1).G_S(t) = G_N\left( G_X(t) \right) = e^{\lambda (G_X(t) - 1)} = e^{\lambda \left( \frac{1}{2} + \frac{1}{2}t - 1 \right)}.

Simplify: GS(t)=eλ(12+12t)=eλ2(t1).G_S(t) = e^{\lambda \left( -\frac{1}{2} + \frac{1}{2}t \right)} = e^{\frac{\lambda}{2} (t - 1)}.

This proves the result: GS(t)=eλ2(1t).G_S(t) = e^{\frac{\lambda}{2}(1 - t)}.


(iii) Distribution of SS:

From the generating function GS(t)=eλ2(t1)G_S(t) = e^{\frac{\lambda}{2} (t - 1)}, we recognize this as the generating function of a Poisson random variable with mean λ2\frac{\lambda}{2}. Thus: SPoisson(λ2).S \sim \text{Poisson}\left( \frac{\lambda}{2} \right).


Let me know if you'd like further clarifications or a more detailed explanation.


5 Questions to Expand Understanding:

  1. What are the properties of generating functions for independent random variables?
  2. How does the generating function of SS relate to the generating function of NN?
  3. Why is the Poisson distribution well-suited for problems involving sums of random variables?
  4. Can we extend this approach to non-Poisson distributions? How would it differ?
  5. What is the intuition behind the result that SPoisson(λ2)S \sim \text{Poisson}(\frac{\lambda}{2})?

Tip:

For generating functions, always remember that substitutions like GN(GX(t))G_N(G_X(t)) allow you to elegantly handle nested random variables, especially in problems involving sums and independent random variables.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Poisson Distribution
Probability Generating Functions
Properties of Independent Random Variables

Formulas

P(N = n) = (λ^n / n!) e^(-λ)
G_N(t) = E(t^N) = e^(λ(t-1))
G_S(t) = G_N(G_X(t))

Theorems

Generating function of a Poisson random variable
Properties of generating functions for independent random variables

Suitable Grade Level

Undergraduate (Probability and Statistics Course)