Math Problem Statement

Answer 6-16 even

Answer 6-16 even

Solution

Let’s solve the even-numbered problems from 6 to 16 as requested.


6. Zeros: 12i1 - 2i and 1+2i1 + 2i

Since the zeros are complex conjugates and the coefficients are real: f(x)=(x(12i))(x(1+2i))f(x) = (x - (1 - 2i))(x - (1 + 2i)) Expand: f(x)=(x1+2i)(x12i)=(x1)2(2i)2=(x1)2+4f(x) = (x - 1 + 2i)(x - 1 - 2i) = (x - 1)^2 - (2i)^2 = (x - 1)^2 + 4 Simplify: f(x)=x22x+1+4=x22x+5f(x) = x^2 - 2x + 1 + 4 = x^2 - 2x + 5


8. Zeros: 4-4, 1i1 - i, and 1+i1 + i

With 1i1 - i and 1+i1 + i being conjugates, the polynomial is: f(x)=(x+4)(x(1i))(x(1+i))f(x) = (x + 4)(x - (1 - i))(x - (1 + i)) Expand: (x(1i))(x(1+i))=(x1+i)(x1i)=(x1)2i2=(x1)2+1(x - (1 - i))(x - (1 + i)) = (x - 1 + i)(x - 1 - i) = (x - 1)^2 - i^2 = (x - 1)^2 + 1 f(x)=(x+4)((x1)2+1)f(x) = (x + 4)((x - 1)^2 + 1) Simplify: f(x)=(x+4)(x22x+1+1)=(x+4)(x22x+2)f(x) = (x + 4)(x^2 - 2x + 1 + 1) = (x + 4)(x^2 - 2x + 2) Distribute: f(x)=x32x2+2x+4x28x+8=x3+2x26x+8f(x) = x^3 - 2x^2 + 2x + 4x^2 - 8x + 8 = x^3 + 2x^2 - 6x + 8


10. Zeros: 1-1, 22, and 1i1 - i, 1+i1 + i

Include conjugates 1i1 - i and 1+i1 + i: f(x)=(x+1)(x2)(x(1i))(x(1+i))f(x) = (x + 1)(x - 2)(x - (1 - i))(x - (1 + i)) Expand x(1i)x - (1 - i) and x(1+i)x - (1 + i): (x(1i))(x(1+i))=(x1)2+1=x22x+2(x - (1 - i))(x - (1 + i)) = (x - 1)^2 + 1 = x^2 - 2x + 2 f(x)=(x+1)(x2)(x22x+2)f(x) = (x + 1)(x - 2)(x^2 - 2x + 2) Simplify: f(x)=(x2x2)(x22x+2)f(x) = (x^2 - x - 2)(x^2 - 2x + 2) Distribute: f(x)=x42x3+2x2x3+2x22x2x2+4x4f(x) = x^4 - 2x^3 + 2x^2 - x^3 + 2x^2 - 2x - 2x^2 + 4x - 4 f(x)=x43x3+2x2+2x4f(x) = x^4 - 3x^3 + 2x^2 + 2x - 4


12. Zeros: 2-2, 1+2i1 + 2i, and 12i1 - 2i

With 1+2i1 + 2i and 12i1 - 2i as conjugates: f(x)=(x+2)(x(1+2i))(x(12i))f(x) = (x + 2)(x - (1 + 2i))(x - (1 - 2i)) Expand x(1+2i)x - (1 + 2i) and x(12i)x - (1 - 2i): [ (x - (1 + 2i))(x - (1 -

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polynomial functions
Complex conjugates
Roots and their multiplicities

Formulas

(x - a)(x - b) = x^2 - (a+b)x + ab (quadratic expansion)
Complex conjugate property: (x - (a + bi))(x - (a - bi)) = (x - a)^2 + b^2

Theorems

Complex conjugate root theorem
Fundamental theorem of algebra

Suitable Grade Level

Grades 10-12