Math Problem Statement

answer #12, #14, and #16

answer #12, #14, and #16

Solution

Let's solve each of the requested problems:


#12: Zeros: 2-2 and 1+2i1 + 2i

To write the polynomial with real coefficients, remember that complex roots come in conjugate pairs. Therefore, the zeros are 2-2, 1+2i1 + 2i, and 12i1 - 2i.

The factors corresponding to these zeros are: (x+2),(x(1+2i)),(x(12i)).(x + 2), \quad (x - (1 + 2i)), \quad (x - (1 - 2i)).

Combine the complex conjugate factors: (x(1+2i))(x(12i))=(x12i)(x1+2i)=(x1)2(2i)2=(x1)2+4.(x - (1 + 2i))(x - (1 - 2i)) = (x - 1 - 2i)(x - 1 + 2i) = (x - 1)^2 - (2i)^2 = (x - 1)^2 + 4.

Now multiply this with (x+2)(x + 2): (x+2)((x1)2+4)=(x+2)(x22x+1+4)=(x+2)(x22x+5).(x + 2)((x - 1)^2 + 4) = (x + 2)(x^2 - 2x + 1 + 4) = (x + 2)(x^2 - 2x + 5).

Expand: x(x22x+5)+2(x22x+5)=x32x2+5x+2x24x+10=x3+x2+x+10.x(x^2 - 2x + 5) + 2(x^2 - 2x + 5) = x^3 - 2x^2 + 5x + 2x^2 - 4x + 10 = x^3 + x^2 + x + 10.

Final polynomial: f(x)=x3+x2+x+10.f(x) = x^3 + x^2 + x + 10.


#14: Zeros: 1-1 (multiplicity 3), 33 (multiplicity 1)

The factors for the zeros are: (x+1)3and(x3).(x + 1)^3 \quad \text{and} \quad (x - 3).

Multiply these together: (x+1)3=(x+1)(x+1)(x+1)=(x2+2x+1)(x+1)=x3+3x2+3x+1.(x + 1)^3 = (x + 1)(x + 1)(x + 1) = (x^2 + 2x + 1)(x + 1) = x^3 + 3x^2 + 3x + 1.

Now multiply by (x3)(x - 3): (x3+3x2+3x+1)(x3).(x^3 + 3x^2 + 3x + 1)(x - 3).

Expand: x(x3+3x2+3x+1)3(x3+3x2+3x+1)=x4+3x3+3x2+x3x39x29x3.x(x^3 + 3x^2 + 3x + 1) - 3(x^3 + 3x^2 + 3x + 1) = x^4 + 3x^3 + 3x^2 + x - 3x^3 - 9x^2 - 9x - 3.

Combine like terms: f(x)=x4+0x36x28x3.f(x) = x^4 + 0x^3 - 6x^2 - 8x - 3.

Final polynomial: f(x)=x46x28x3.f(x) = x^4 - 6x^2 - 8x - 3.


#16: Zeros: 22 (multiplicity 2), 2+i-2 + i (multiplicity 1)

Since 2+i-2 + i is a root, its conjugate 2i-2 - i must also be a root.

The factors corresponding to these zeros are: (x2)2,(x(2+i)),(x(2i)).(x - 2)^2, \quad (x - (-2 + i)), \quad (x - (-2 - i)).

Simplify the complex conjugate pair: (x(2+i))(x(2i))=(x+2i)(x+2+i)=(x+2)2(i)2=(x+2)2+1=x2+4x+5.(x - (-2 + i))(x - (-2 - i)) = (x + 2 - i)(x + 2 + i) = (x + 2)^2 - (i)^2 = (x + 2)^2 + 1 = x^2 + 4x + 5.

Now multiply this with (x2)2(x - 2)^2: (x2)2(x2+4x+5).(x - 2)^2(x^2 + 4x + 5).

First expand (x2)2(x - 2)^2: (x2)2=(x2)(x2)=x24x+4.(x - 2)^2 = (x - 2)(x - 2) = x^2 - 4x + 4.

Now multiply this with (x2+4x+5)(x^2 + 4x + 5): (x24x+4)(x2+4x+5).(x^2 - 4x + 4)(x^2 + 4x + 5).

Expand: x2(x2+4x+5)4x(x2+4x+5)+4(x2+4x+5).x^2(x^2 + 4x + 5) - 4x(x^2 + 4x + 5) + 4(x^2 + 4x + 5).

=x4+4x3+5x24x316x220x+4x2+16x+20.= x^4 + 4x^3 + 5x^2 - 4x^3 - 16x^2 - 20x + 4x^2 + 16x + 20.

Combine like terms: f(x)=x47x24x+20.f(x) = x^4 - 7x^2 - 4x + 20.

Final polynomial: f(x)=x47x24x+20.f(x) = x^4 - 7x^2 - 4x + 20.


Recap of Results:

  1. #12: f(x)=x3+x2+x+10f(x) = x^3 + x^2 + x + 10
  2. #14: f(x)=x46x28x3f(x) = x^4 - 6x^2 - 8x - 3
  3. #16: f(x)=x47x24x+20f(x) = x^4 - 7x^2 - 4x + 20

Would you like more detailed steps or additional questions?
Here are five related problems for practice:

  1. How do you verify that a polynomial has the given roots?
  2. Write a polynomial where the zeros are 0,30, 3, and 3-3.
  3. Solve for a polynomial with 1+3i1 + 3i and 13i1 - 3i as roots.
  4. Write a polynomial with 1-1 (multiplicity 2) and 22 (multiplicity 1).
  5. What happens to the degree of a polynomial when you increase a root's multiplicity?

Tip: Always check for conjugate pairs when working with complex roots and real coefficients!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polynomials
Complex Numbers
Roots of Polynomials
Conjugate Pairs

Formulas

Product of roots for quadratic polynomials: (x - root1)(x - root2)
Complex root conjugate pair expansion: (x - (a + bi))(x - (a - bi)) = (x - a)^2 + b^2
Root multiplicity effect on polynomial degree

Theorems

Fundamental Theorem of Algebra
Properties of Polynomials with Real Coefficients

Suitable Grade Level

Grades 10-12