Math Problem Statement

Die Abbildung zeigt den Graphen einer in ℝ definierten ganzrationalen Funktion f. Der Graph ist symmetrisch zur y-Achse. Bearbeiten Sie die Aufgaben (a) bis (e) basierend auf den gegebenen Informationen und dem Graphen.

Solution

The provided image contains a mathematical problem related to polynomial functions and calculus. I will extract and analyze the content step by step to answer the subparts.


Aufgabe 1.1.2 Breakdown

The problem is centered around the function f(x)f(x), a real-valued polynomial function with properties:

  • Its graph is symmetrical about the yy-axis, meaning f(x)f(x) is an even function.
  • Analysis of f(x)f(x) and its derivatives f(x)f'(x), F(x)F(x) (antiderivative), and integration values is required.

Subtasks:


a)

"Begründen Sie, dass ff mindestens den Grad vier besitzt."

  • f(x)f(x) is symmetric about the yy-axis, implying f(x)f(x) is an even polynomial.
    • For even polynomials, the terms are of even powers (e.g., x4,x2,x0x^4, x^2, x^0).
  • Looking at the graph, the behavior of f(x)f(x) shows three turning points.
    • A polynomial's degree nn has n1n-1 maximum turning points.
    • Hence, to have at least three turning points, f(x)f(x) must have a degree of n4n \geq 4.

Answer: Grad n4\text{Grad } n \geq 4, da der Graph drei Wendepunkte besitzt.


b)

"Für jedes xRx \in \mathbb{R} gilt f(x)4f(x) \geq -4. Untersuchen Sie, ob auch f(x)4f'(x) \geq -4 für jedes xRx \in \mathbb{R} gilt."

  • f(x)4f(x) \geq -4 means f(x)f(x)'s minimum value is at least 4-4. The graph shows f(x)=4f(x) = -4 at its lowest points.
  • However, f(x)f'(x) represents the slope (derivative), and the slope can be less than 4-4.
    • Example: At steeply decreasing points, f(x)<4f'(x) < -4.
    • Checking the graph's slopes reveals regions where f(x)f'(x) is negative and less than 4-4.

Answer: f(x)4f'(x) \geq -4 gilt nicht, da der Graph von f(x)f(x) steiler abfällt (z.B. f(x)<4f'(x) < -4 in bestimmten Intervallen).


c)

"F ist eine Stammfunktion von ff. Untersuchen Sie, ob der Graph von FF mindestens einen Wendepunkt mit waagrechter Tangente besitzt."

  • F(x)F(x) is the antiderivative of f(x)f(x), i.e., F(x)=f(x)F'(x) = f(x).
  • A point of inflection (Wendepunkt) occurs when F(x)=f(x)F''(x) = f'(x) changes sign.
    • The graph of f(x)f(x) shows regions where f(x)f'(x) changes sign (e.g., at extrema).
    • At these points, F(x)=f(x)F''(x) = f'(x) crosses zero, confirming an inflection point.

Answer: Der Graph von F(x)F(x) hat mindestens einen Wendepunkt mit waagrechter Tangente, da f(x)f'(x) ein Vorzeichenwechsel hat.


d)

"Begründen Sie, dass gilt: 02f(x)dx>8\int_0^2 f(x) dx > -8."

  • The definite integral 02f(x)dx\int_0^2 f(x) dx represents the area under the curve of f(x)f(x) from x=0x = 0 to x=2x = 2.
  • The graph shows that f(x)4f(x) \geq -4 everywhere, including this interval.
    • Since f(x)4f(x) \geq -4, the total area under f(x)f(x) is greater than 8-8 because the integral 024dx=8\int_0^2 -4 dx = -8.

Answer: 02f(x)dx>8\int_0^2 f(x) dx > -8, da f(x)4f(x) \geq -4 in diesem Intervall.


e)

"Gegeben ist die Funktion g(x)=f(x)+cg(x) = f(x) + c. Für einen Wert von cc gilt 02f(x)dx=8+02g(x)dx\int_0^2 f(x) dx = 8 + \int_0^2 g(x) dx. Ermitteln Sie den Wert von cc."

  • Start with the given equation:
    02f(x)dx=8+02g(x)dx\int_0^2 f(x) dx = 8 + \int_0^2 g(x) dx
    Substitute g(x)=f(x)+cg(x) = f(x) + c:
    02f(x)dx=8+02(f(x)+c)dx\int_0^2 f(x) dx = 8 + \int_0^2 \big(f(x) + c\big) dx
    Expand the integral:
    02f(x)dx=8+02f(x)dx+02cdx\int_0^2 f(x) dx = 8 + \int_0^2 f(x) dx + \int_0^2 c \, dx
    Simplify:
    0=8+c2    c=40 = 8 + c \cdot 2 \quad \implies \quad c = -4

Answer: ( c = -

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Polynomial Functions
Symmetry
Derivative Analysis
Antiderivative
Definite Integration

Formulas

Symmetry: f(x) = f(-x) for even functions
Degree of polynomial: n ≥ turning points + 1
Antiderivative relationship: F'(x) = f(x)
Definite integral: ∫[a,b] f(x) dx

Theorems

Relationship between degree of polynomial and turning points
Properties of even functions
Fundamental Theorem of Calculus

Suitable Grade Level

Grade 11-13 (Advanced High School Level)