Math Problem Statement

Use langrange method and the answer is y= (3/8)x^2- (11/4)x+6 and y(5)= 13/8

Construct a polynomial for the data given below using the Lagrange interpolation method and find y when x = 5. Data: x = [4, 6, 8, 10] and y = [1, 3, 8, 16].

Solution

Thank you for uploading the question. Let's solve the problem using the Lagrange interpolation method to confirm the polynomial and find y(5)y(5).

Given Data:

xxyy
41
63
88
1016

The formula for the Lagrange polynomial is:

P(x)=i=1nyii(x)P(x) = \sum_{i=1}^{n} y_i \cdot \ell_i(x)

where: i(x)=j=1,jinxxjxixj\ell_i(x) = \prod_{j=1, j \neq i}^{n} \frac{x - x_j}{x_i - x_j}

Step 1: Compute the polynomial

We will compute the Lagrange basis polynomials 1(x),2(x),3(x),4(x)\ell_1(x), \ell_2(x), \ell_3(x), \ell_4(x) for x1=4,x2=6,x3=8,x4=10x_1 = 4, x_2 = 6, x_3 = 8, x_4 = 10, and substitute the corresponding yiy_i values.


1. Lagrange basis 1(x)\ell_1(x):

1(x)=(x6)(x8)(x10)(46)(48)(410)=(x6)(x8)(x10)(2)(4)(6)=148(x6)(x8)(x10)\ell_1(x) = \frac{(x - 6)(x - 8)(x - 10)}{(4 - 6)(4 - 8)(4 - 10)} = \frac{(x - 6)(x - 8)(x - 10)}{(-2)(-4)(-6)} = -\frac{1}{48}(x - 6)(x - 8)(x - 10)

2. Lagrange basis 2(x)\ell_2(x):

2(x)=(x4)(x8)(x10)(64)(68)(610)=(x4)(x8)(x10)(2)(2)(4)=116(x4)(x8)(x10)\ell_2(x) = \frac{(x - 4)(x - 8)(x - 10)}{(6 - 4)(6 - 8)(6 - 10)} = \frac{(x - 4)(x - 8)(x - 10)}{(2)(-2)(-4)} = \frac{1}{16}(x - 4)(x - 8)(x - 10)

3. Lagrange basis 3(x)\ell_3(x):

3(x)=(x4)(x6)(x10)(84)(86)(810)=(x4)(x6)(x10)(4)(2)(2)=116(x4)(x6)(x10)\ell_3(x) = \frac{(x - 4)(x - 6)(x - 10)}{(8 - 4)(8 - 6)(8 - 10)} = \frac{(x - 4)(x - 6)(x - 10)}{(4)(2)(-2)} = -\frac{1}{16}(x - 4)(x - 6)(x - 10)

4. Lagrange basis 4(x)\ell_4(x):

4(x)=(x4)(x6)(x8)(104)(106)(108)=(x4)(x6)(x8)(6)(4)(2)=148(x4)(x6)(x8)\ell_4(x) = \frac{(x - 4)(x - 6)(x - 8)}{(10 - 4)(10 - 6)(10 - 8)} = \frac{(x - 4)(x - 6)(x - 8)}{(6)(4)(2)} = \frac{1}{48}(x - 4)(x - 6)(x - 8)


Step 2: Combine the terms

The polynomial is: P(x)=y11(x)+y22(x)+y33(x)+y44(x)P(x) = y_1 \cdot \ell_1(x) + y_2 \cdot \ell_2(x) + y_3 \cdot \ell_3(x) + y_4 \cdot \ell_4(x)

Substitute y1=1,y2=3,y3=8,y4=16y_1 = 1, y_2 = 3, y_3 = 8, y_4 = 16:

[ P(x) = 1 \cdot \left[ -\frac{1}{48}(x - 6)(x - 8)(x - 10) \right]

  • 3 \cdot \left[ \frac{1}{16}(x - 4)(x - 8)(x - 10) \right] ] [
  • 8 \cdot \left[ -\frac{1}{16}(x - 4)(x - 6)(x - 10) \right]
  • 16 \cdot \left[ \frac{1}{48}(x - 4)(x - 6)(x - 8) \right] ]

Expanding and simplifying will give: P(x)=38x2114x+6P(x) = \frac{3}{8}x^2 - \frac{11}{4}x + 6


Step 3: Find y(5)y(5):

Substitute x=5x = 5 into P(x)P(x): P(5)=38(52)114(5)+6P(5) = \frac{3}{8}(5^2) - \frac{11}{4}(5) + 6 P(5)=38(25)554+6=7581108+488P(5) = \frac{3}{8}(25) - \frac{55}{4} + 6 = \frac{75}{8} - \frac{110}{8} + \frac{48}{8} P(5)=138P(5) = \frac{13}{8}


Final Answer:

The polynomial is: P(x)=38x2114x+6P(x) = \frac{3}{8}x^2 - \frac{11}{4}x + 6

The value of y(5)y(5) is: y(5)=138y(5) = \frac{13}{8}


Would you like further explanation or details?


Related Questions:

  1. How is Lagrange interpolation used in other fields of study?
  2. What are the limitations of the Lagrange interpolation method?
  3. How can you verify that the polynomial passes through all given points?
  4. How do higher-degree polynomials affect the accuracy of interpolation?
  5. Can this method be used for data with uneven intervals in xx?

Tip:

For large datasets, Lagrange interpolation becomes computationally intensive; consider using Newton's divided difference method for efficiency.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Interpolation
Lagrange Polynomial
Algebra

Formulas

P(x) = ∑(y_i * ℓ_i(x)) where ℓ_i(x) = Π((x - x_j) / (x_i - x_j)), j ≠ i

Theorems

Lagrange Interpolation Theorem

Suitable Grade Level

Grades 10-12