Math Problem Statement
P_1 (x)=3.51×(x-0.30)(x-0.78)(x-1.57)(x-2.09)/(0.00-0.30)(0.00-0.78)(0.00-1.57)(0.00-2.09) +3.97×(x-0.00)(x-0.78)(x-1.57)(x-2.09)/(0.30-0.00)(0.30-0.78)(0.30-1.57)(0.30-2.09) +4.19×(x-0.00)(x-0.30)(x-1.57)(x-2.09)/(0.78-0.00)(0.78-0.30)(0.78-1.57)(0.78-2.09) +3.97×(x-0.00)(x-0.30)(x-0.78)(x-2.09)/(1.57-0.00)(1.57-0.30)(1.57-0.78)(1.57-2.09) +3.57×((x-0.00)(x-0.30)(x-0.78)(x-1.57))/((2.09-0.00)(2.09-0.30)(2.09-0.78)(2.09-1.57)) fund the polynomial
Solution
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Lagrange Interpolation
Polynomial Approximation
Formulas
P(x) = Σ(y_i * Π((x - x_j) / (x_i - x_j))), j ≠ i
Theorems
Lagrange Interpolation Theorem
Suitable Grade Level
Grades 11-12 or Undergraduate
Related Recommendation
Lagrange Interpolation Method for Polynomial Interpolation at x = 0.5
Lagrange Interpolation Polynomial for Given Points y(1), y(3), y(4), y(6)
Lagrange Interpolation for Given Data Points and Approximating at x = 0.2 and x = 0.6
Polynomial Construction Using Lagrange Interpolation for Given Data Points
Lagrange Interpolation Polynomial for Points (1, -3), (3, 0), (4, 30), (6, 132)