Math Problem Statement

Work out the perimeter of ABCD in each diagram below. Give your answers to 2 decimal places.

Solution

Let's solve the problem step by step for each diagram. The task is to calculate the perimeter of ABCDABCD in both diagrams, giving answers to two decimal places.


Diagram 1: Left Triangle ABCDABCD

  1. Given Data:

    • AB=12cmAB = 12 \, \text{cm} (horizontal side),
    • BD=11cmBD = 11 \, \text{cm} (diagonal side),
    • BDC=30\angle BDC = 30^\circ.
  2. Find missing sides:

    • Side DCDC: Use the right triangle BDCBDC. DC=BDsin(30)=110.5=5.5cm.DC = BD \cdot \sin(30^\circ) = 11 \cdot 0.5 = 5.5 \, \text{cm}.
    • Side BCBC: Use the right triangle BDCBDC. BC=BDcos(30)=1132110.866=9.53cm.BC = BD \cdot \cos(30^\circ) = 11 \cdot \frac{\sqrt{3}}{2} \approx 11 \cdot 0.866 = 9.53 \, \text{cm}.
    • Side AD=ABBCAD = AB - BC: AD=129.53=2.47cm.AD = 12 - 9.53 = 2.47 \, \text{cm}.
  3. Perimeter of ABCDABCD: Add up all the sides: Perimeter=AB+BD+DC+AD=12+11+5.5+2.47=30.97cm.\text{Perimeter} = AB + BD + DC + AD = 12 + 11 + 5.5 + 2.47 = 30.97 \, \text{cm}.


Diagram 2: Right Triangle ABCDABCD

  1. Given Data:

    • AB=3cmAB = 3 \, \text{cm},
    • BD=123.46cmBD = \sqrt{12} \approx 3.46 \, \text{cm},
    • BCD=60\angle BCD = 60^\circ.
  2. Find missing sides:

    • Side DCDC: Use the right triangle BCDBCD. DC=BDsin(60)=3.46323.460.866=3.00cm.DC = BD \cdot \sin(60^\circ) = 3.46 \cdot \frac{\sqrt{3}}{2} \approx 3.46 \cdot 0.866 = 3.00 \, \text{cm}.
    • Side BCBC: Use the right triangle BCDBCD. BC=BDcos(60)=3.460.5=1.73cm.BC = BD \cdot \cos(60^\circ) = 3.46 \cdot 0.5 = 1.73 \, \text{cm}.
    • Side AD=AB=3cmAD = AB = 3 \, \text{cm} (as given, since ABAB is equal to ADAD).
  3. Perimeter of ABCDABCD: Add up all the sides: Perimeter=AB+BD+DC+BC=3+3.46+3.00+1.73=11.19cm.\text{Perimeter} = AB + BD + DC + BC = 3 + 3.46 + 3.00 + 1.73 = 11.19 \, \text{cm}.


Final Answers:

  • Perimeter of Diagram 1: 30.97cm30.97 \, \text{cm},
  • Perimeter of Diagram 2: 11.19cm11.19 \, \text{cm}.

Would you like a deeper explanation of any steps or formulas used?

Related Questions:

  1. How do we derive the sine and cosine formulas for triangles?
  2. Why is sin(30)=0.5\sin(30^\circ) = 0.5 and cos(30)=32\cos(30^\circ) = \frac{\sqrt{3}}{2}?
  3. Can we use Pythagoras' theorem for solving right triangle sides instead of trigonometry here?
  4. How would the calculation change if BDC\angle BDC were 4545^\circ?
  5. What are some other practical applications of finding perimeters using trigonometry?

Tip:

Always check if the given triangle is a right triangle before deciding which formula (Pythagoras or trigonometry) is more efficient to use.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Geometry
Trigonometry
Perimeter Calculation
Right Triangles

Formulas

Perimeter = sum of all side lengths
Trigonometric Ratios: sin(θ), cos(θ)
Pythagoras' Theorem (optional)

Theorems

Basic Trigonometric Ratios in Right Triangles

Suitable Grade Level

Grades 9-10