Math Problem Statement

Laske seuraavat osittaisderivaatit annetuista funktioista.

Solution

Let's analyze the function given:

f(x,y,z)=cos(2x)zeyzf(x, y, z) = \cos(2x) \cdot z \cdot e^{y \cdot z}

and calculate the following partial derivatives as requested.

a) fz\frac{\partial f}{\partial z}

To find fz\frac{\partial f}{\partial z}, we differentiate f(x,y,z)f(x, y, z) with respect to zz, treating xx and yy as constants:

f(x,y,z)=cos(2x)zeyzf(x, y, z) = \cos(2x) \cdot z \cdot e^{y \cdot z}

Applying the product rule, we get:

fz=cos(2x)z(zeyz)\frac{\partial f}{\partial z} = \cos(2x) \cdot \frac{\partial}{\partial z} \left(z \cdot e^{y \cdot z}\right)

Expanding z(zeyz)\frac{\partial}{\partial z} \left(z \cdot e^{y \cdot z}\right) with the product rule:

z(zeyz)=eyz+zyeyz=eyz(1+yz)\frac{\partial}{\partial z} \left(z \cdot e^{y \cdot z}\right) = e^{y \cdot z} + z \cdot y \cdot e^{y \cdot z} = e^{y \cdot z} (1 + y \cdot z)

Thus,

fz=cos(2x)eyz(1+yz)\frac{\partial f}{\partial z} = \cos(2x) \cdot e^{y \cdot z} \cdot (1 + y \cdot z)

b) fx\frac{\partial f}{\partial x}

To find fx\frac{\partial f}{\partial x}, we differentiate f(x,y,z)f(x, y, z) with respect to xx, treating yy and zz as constants:

f(x,y,z)=cos(2x)zeyzf(x, y, z) = \cos(2x) \cdot z \cdot e^{y \cdot z}

The derivative of cos(2x)\cos(2x) with respect to xx is 2sin(2x)-2 \sin(2x), so:

fx=2sin(2x)zeyz\frac{\partial f}{\partial x} = -2 \sin(2x) \cdot z \cdot e^{y \cdot z}

c) 2fxy\frac{\partial^2 f}{\partial x \partial y}

To find 2fxy\frac{\partial^2 f}{\partial x \partial y}, we first find fy\frac{\partial f}{\partial y} and then differentiate it with respect to xx:

f(x,y,z)=cos(2x)zeyzf(x, y, z) = \cos(2x) \cdot z \cdot e^{y \cdot z}

First, we compute fy\frac{\partial f}{\partial y}:

fy=cos(2x)zy(eyz)=cos(2x)z2eyz\frac{\partial f}{\partial y} = \cos(2x) \cdot z \cdot \frac{\partial}{\partial y} \left(e^{y \cdot z}\right) = \cos(2x) \cdot z^2 \cdot e^{y \cdot z}

Now, we differentiate this with respect to xx:

2fxy=2sin(2x)z2eyz\frac{\partial^2 f}{\partial x \partial y} = -2 \sin(2x) \cdot z^2 \cdot e^{y \cdot z}

d) 2fy2\frac{\partial^2 f}{\partial y^2}

To find 2fy2\frac{\partial^2 f}{\partial y^2}, we first find fy\frac{\partial f}{\partial y} and then differentiate it again with respect to yy:

We already have:

fy=cos(2x)z2eyz\frac{\partial f}{\partial y} = \cos(2x) \cdot z^2 \cdot e^{y \cdot z}

Now, differentiate this with respect to yy:

2fy2=cos(2x)z3eyz\frac{\partial^2 f}{\partial y^2} = \cos(2x) \cdot z^3 \cdot e^{y \cdot z}

Summary of the results:

  1. fz=cos(2x)eyz(1+yz)\frac{\partial f}{\partial z} = \cos(2x) \cdot e^{y \cdot z} \cdot (1 + y \cdot z)
  2. fx=2sin(2x)zeyz\frac{\partial f}{\partial x} = -2 \sin(2x) \cdot z \cdot e^{y \cdot z}
  3. 2fxy=2sin(2x)z2eyz\frac{\partial^2 f}{\partial x \partial y} = -2 \sin(2x) \cdot z^2 \cdot e^{y \cdot z}
  4. 2fy2=cos(2x)z3eyz\frac{\partial^2 f}{\partial y^2} = \cos(2x) \cdot z^3 \cdot e^{y \cdot z}

Would you like any further explanation or details?

Here are some follow-up questions that expand on this topic:

  1. How would the partial derivatives change if f(x,y,z)f(x, y, z) had a different exponent in the exponential term?
  2. What would be the result of 2fzx\frac{\partial^2 f}{\partial z \partial x}?
  3. Can we compute the third derivative 3fxyz\frac{\partial^3 f}{\partial x \partial y \partial z} for this function?
  4. How does the cosine function affect the partial derivatives compared to if it was a simple constant?
  5. How would the answer change if f(x,y,z)=sin(2x)zeyzf(x, y, z) = \sin(2x) \cdot z \cdot e^{y \cdot z}?

Tip: Always remember to apply the chain rule carefully when dealing with exponential functions and trigonometric expressions in partial derivatives.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Partial Derivatives
Multivariable Calculus
Product Rule
Chain Rule

Formulas

Product rule: (uv)' = u'v + uv'
Chain rule for exponentials: (e^{f(x)})' = e^{f(x)} f'(x)
Partial derivative notation: ∂f/∂x, ∂²f/∂x∂y

Theorems

-

Suitable Grade Level

University Level Calculus