Math Problem Statement

Find the vector parallel to \(\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}\) that has a magnitude/length equal to 7.

Solution

To find the vector parallel to u=[123]\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} with a magnitude of 7, follow these steps:

Step 1: Find the magnitude of the given vector u\vec{u}.

The magnitude of u=[123]\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} is calculated using the formula:

u=12+22+32=1+4+9=14|\vec{u}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}

So, the magnitude of u\vec{u} is 14\sqrt{14}.

Step 2: Normalize the vector u\vec{u}.

To get a unit vector in the direction of u\vec{u}, divide each component of u\vec{u} by its magnitude:

u^=114[123]=[114214314]\hat{u} = \frac{1}{\sqrt{14}} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{14}} \\ \frac{2}{\sqrt{14}} \\ \frac{3}{\sqrt{14}} \end{bmatrix}

Step 3: Scale the unit vector to the desired magnitude.

Now, multiply the unit vector by 7 to obtain a vector with a magnitude of 7:

v=7×u^=7×[114214314]=[71414142114]\vec{v} = 7 \times \hat{u} = 7 \times \begin{bmatrix} \frac{1}{\sqrt{14}} \\ \frac{2}{\sqrt{14}} \\ \frac{3}{\sqrt{14}} \end{bmatrix} = \begin{bmatrix} \frac{7}{\sqrt{14}} \\ \frac{14}{\sqrt{14}} \\ \frac{21}{\sqrt{14}} \end{bmatrix}

Simplifying:

[ \vec{v} = \begin{bmatrix} \frac{7}{\sqrt{14}} \ \frac{14}{\sqrt{14}} \ \frac{21}{\sqrt{14}} \end{bmatrix} = \sqrt{\frac{7}{2}} \cdot expansion making"

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Vector Operations
Scalar Multiplication
Vector Magnitude

Formulas

Vector magnitude: |\vec{u}| = \sqrt{x^2 + y^2 + z^2}
Unit vector: \hat{u} = \frac{\vec{u}}{|\vec{u}|}
Scalar multiplication for desired magnitude: \vec{v} = k \times \hat{u}

Theorems

Properties of Parallel Vectors

Suitable Grade Level

Grades 10-12