Math Problem Statement

Question content area left Part 1 Determine whether the set of vectors is orthonormal. If the set is only​ orthogonal, normalize the vectors to produce an orthonormal set. Bold u 1 equals Start 3 By 1 Table 1st Row 1st Column negative one third 2nd Row 1st Column two thirds 3rd Row 1st Column one third EndTable and Bold u 2 equals Start 3 By 1 Table 1st Row 1st Column one tenth 2nd Row 1st Column 0 3rd Row 1st Column one tenth EndTable

Solution

To determine if the given set of vectors u1\mathbf{u}_1 and u2\mathbf{u}_2 is orthonormal or orthogonal, we follow these steps:

Step 1: Check for orthogonality

Two vectors are orthogonal if their dot product is zero: u1u2=i=1nu1iu2i\mathbf{u}_1 \cdot \mathbf{u}_2 = \sum_{i=1}^{n} u_{1i} \cdot u_{2i}

Vectors:

u1=[132313],u2=[1100110]\mathbf{u}_1 = \begin{bmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} \frac{1}{10} \\ 0 \\ \frac{1}{10} \end{bmatrix}

Dot Product:

u1u2=(13)(110)+(23)(0)+(13)(110)\mathbf{u}_1 \cdot \mathbf{u}_2 = \left(-\frac{1}{3}\right)\left(\frac{1}{10}\right) + \left(\frac{2}{3}\right)(0) + \left(\frac{1}{3}\right)\left(\frac{1}{10}\right) u1u2=130+0+130=0\mathbf{u}_1 \cdot \mathbf{u}_2 = -\frac{1}{30} + 0 + \frac{1}{30} = 0

Since the dot product is zero, the vectors are orthogonal.


Step 2: Check for orthonormality

Vectors are orthonormal if they are orthogonal and each has a norm of 1. To check this, calculate the norm of each vector.

Norm of u1\mathbf{u}_1:

u1=(13)2+(23)2+(13)2\|\mathbf{u}_1\| = \sqrt{\left(-\frac{1}{3}\right)^2 + \left(\frac{2}{3}\right)^2 + \left(\frac{1}{3}\right)^2} u1=19+49+19=69=23\|\mathbf{u}_1\| = \sqrt{\frac{1}{9} + \frac{4}{9} + \frac{1}{9}} = \sqrt{\frac{6}{9}} = \sqrt{\frac{2}{3}}

Norm of u2\mathbf{u}_2:

u2=(110)2+02+(110)2\|\mathbf{u}_2\| = \sqrt{\left(\frac{1}{10}\right)^2 + 0^2 + \left(\frac{1}{10}\right)^2} u2=1100+1100=2100=210\|\mathbf{u}_2\| = \sqrt{\frac{1}{100} + \frac{1}{100}} = \sqrt{\frac{2}{100}} = \frac{\sqrt{2}}{10}

Neither vector has a norm of 1, so the set is not orthonormal.


Step 3: Normalize the vectors

To normalize a vector u\mathbf{u}, divide each component by its norm.

Normalizing u1\mathbf{u}_1:

u1normalized=u1u1=[132313]23\mathbf{u}_1^{\text{normalized}} = \frac{\mathbf{u}_1}{\|\mathbf{u}_1\|} = \frac{\begin{bmatrix} -\frac{1}{3} \\ \frac{2}{3} \\ \frac{1}{3} \end{bmatrix}}{\sqrt{\frac{2}{3}}} u1normalized=[132323231323]=[33232332]\mathbf{u}_1^{\text{normalized}} = \begin{bmatrix} -\frac{1}{3\sqrt{\frac{2}{3}}} \\ \frac{2}{3\sqrt{\frac{2}{3}}} \\ \frac{1}{3\sqrt{\frac{2}{3}}} \end{bmatrix} = \begin{bmatrix} -\frac{\sqrt{3}}{3\sqrt{2}} \\ \frac{\sqrt{3}}{\sqrt{2}} \\ \frac{\sqrt{3}}{3\sqrt{2}} \end{bmatrix}

Normalizing u2\mathbf{u}_2:

u2normalized=u2u2=[1100110]210\mathbf{u}_2^{\text{normalized}} = \frac{\mathbf{u}_2}{\|\mathbf{u}_2\|} = \frac{\begin{bmatrix} \frac{1}{10} \\ 0 \\ \frac{1}{10} \end{bmatrix}}{\frac{\sqrt{2}}{10}} u2normalized=[1101020110102]=[12012]\mathbf{u}_2^{\text{normalized}} = \begin{bmatrix} \frac{1}{10} \cdot \frac{10}{\sqrt{2}} \\ 0 \\ \frac{1}{10} \cdot \frac{10}{\sqrt{2}} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}


Final Orthonormal Set:

u1normalized=[33232332],u2normalized=[12012]\mathbf{u}_1^{\text{normalized}} = \begin{bmatrix} -\frac{\sqrt{3}}{3\sqrt{2}} \\ \frac{\sqrt{3}}{\sqrt{2}} \\ \frac{\sqrt{3}}{3\sqrt{2}} \end{bmatrix}, \quad \mathbf{u}_2^{\text{normalized}} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}} \end{bmatrix}

Let me know if you'd like detailed calculations or further questions addressed!


Related Questions:

  1. What is the geometric meaning of orthonormal vectors?
  2. How does normalization affect the length of a vector?
  3. Can any set of orthogonal vectors be normalized to form an orthonormal set?
  4. How does the dot product verify orthogonality?
  5. Why is orthonormality important in applications like computer graphics?

Tip:

When normalizing a vector, always divide by its norm to ensure its length becomes 1!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Vector Dot Product
Vector Norms
Orthonormal Vectors
Normalization

Formulas

Dot product: u1 ⋅ u2 = Σ(u1i * u2i)
Norm: ||u|| = √(Σ(u_i^2))
Normalization: u_normalized = u / ||u||

Theorems

Two vectors are orthogonal if their dot product is zero
Vectors are orthonormal if they are orthogonal and each has a norm of 1

Suitable Grade Level

Grades 11-12