Math Problem Statement

Let u1 and u2 be vectors in R^3: u1 = (1, 2, 3) and u2 = (1, -1, 1). Solve the following: 1. Show that dim(U) = 2 for U = Span{u1, u2}. 2. Verify that u1 and u2 are not orthogonal. 3. Find an orthogonal basis for U containing u1. 4. Let b = (0, 0, 1). Compute proj_U(b).

Solution

Let's work through the questions:

  1. Show that dim(U)=2\text{dim}(U) = 2:

    • Vectors u1=(123)u_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} and u2=(111)u_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} are linearly independent because no scalar multiple of one gives the other.
    • Therefore, {u1,u2}\{u_1, u_2\} forms a basis for U=Span{u1,u2}U = \text{Span}\{u_1, u_2\}.
    • Thus, dim(U)=2\text{dim}(U) = 2.
  2. Show that u1u_1 and u2u_2 are not orthogonal:

    • Compute the dot product: u1u2=11+2(1)+31=12+3=2.u_1 \cdot u_2 = 1 \cdot 1 + 2 \cdot (-1) + 3 \cdot 1 = 1 - 2 + 3 = 2.
    • Since the dot product is not zero, u1u_1 and u2u_2 are not orthogonal.
  3. Find an orthogonal basis of UU containing u1u_1:

    • Use the Gram-Schmidt process:
      • Start with v1=u1=(123)v_1 = u_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}.
      • Compute v2v_2: v2=u2u2v1v1v1v1v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1
      • Calculate: u2v1=2,v1v1=14u_2 \cdot v_1 = 2, \quad v_1 \cdot v_1 = 14 v2=(111)214(123)=(111)(172737)=(679747)v_2 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} - \frac{2}{14} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} - \begin{pmatrix} \frac{1}{7} \\ \frac{2}{7} \\ \frac{3}{7} \end{pmatrix} = \begin{pmatrix} \frac{6}{7} \\ -\frac{9}{7} \\ \frac{4}{7} \end{pmatrix}
    • Orthogonal basis: {(123),(679747)}\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} \frac{6}{7} \\ -\frac{9}{7} \\ \frac{4}{7} \end{pmatrix} \right\}.
  4. Find projU(b)\text{proj}_U(b) where b=(001)b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}:

    • projv1(b)\text{proj}_{v_1}(b): projv1(b)=bv1v1v1v1=314(123)=(314614914)\text{proj}_{v_1}(b) = \frac{b \cdot v_1}{v_1 \cdot v_1} v_1 = \frac{3}{14} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} \frac{3}{14} \\ \frac{6}{14} \\ \frac{9}{14} \end{pmatrix}
    • projv2(b)\text{proj}_{v_2}(b): projv2(b)=bv2v2v2v2\text{proj}_{v_2}(b) = \frac{b \cdot v_2}{v_2 \cdot v_2} v_2
      • Calculate bv2=47b \cdot v_2 = \frac{4}{7} and v2v2=13349v_2 \cdot v_2 = \frac{133}{49}: projv2(b)=4713349(679747)=(241333613316133)\text{proj}_{v_2}(b) = \frac{\frac{4}{7}}{\frac{133}{49}} \begin{pmatrix} \frac{6}{7} \\ -\frac{9}{7} \\ \frac{4}{7} \end{pmatrix} = \begin{pmatrix} \frac{24}{133} \\ -\frac{36}{133} \\ \frac{16}{133} \end{pmatrix}
    • projU(b)=projv1(b)+projv2(b)=(8113330133151133)\text{proj}_U(b) = \text{proj}_{v_1}(b) + \text{proj}_{v_2}(b) = \begin{pmatrix} \frac{81}{133} \\ \frac{30}{133} \\ \frac{151}{133} \end{pmatrix}.

These solutions provide a complete analysis of the problem regarding the span and orthogonality of vectors in R3\mathbb{R}^3.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Linear Algebra
Vector Spaces
Orthogonality
Projection

Formulas

Dot product: u • v = u1*v1 + u2*v2 + u3*v3
Gram-Schmidt orthogonalization
Projection formula: proj_v(b) = (b • v / v • v) * v

Theorems

Linear independence and dimension
Properties of dot products
Gram-Schmidt process for orthogonalization

Suitable Grade Level

Undergraduate - Linear Algebra Course