Here are the functions and operations as shown in the image:
Given functions:
f(x)=6x2−35x+49
g(x)=34x+2
j(x)=x2−1
k(x)=3x−7
m(x)=4x+22
h(x)=x2+3x−4
Tasks:
(h−k)(x)
(jg)(x)
(f⋅k)(x)
(k+m)(x)
h(k)−(k⋅m)(x)
Let's solve them step by step:
1. (h−k)(x)
This represents the difference between the functions h(x) and k(x):
(h−k)(x)=h(x)−k(x)=(x2+3x−4)−(3x−7)
Simplify the expression:
=x2+3x−4−3x+7=x2+3x−3x−4+7=x2+3
So, (h−k)(x)=x2+3.
2. (jg)(x)
This represents the division of the functions g(x) and j(x):
(jg)(x)=j(x)g(x)=x2−134x+2
To simplify this, multiply the numerator and denominator by x:
(x2−1)⋅x(34x+2)⋅x=2−x34x2+2x
So, (jg)(x)=2−x34x2+2x.
3. (f⋅k)(x)
This represents the product of the functions f(x) and k(x):
(f⋅k)(x)=f(x)⋅k(x)=(6x2−35x+49)(3x−7)
Expanding this:
(6x2−35x+49)(3x−7)=6x2(3x)+6x2(−7)−35x(3x)−35x(−7)+49(3x)+49(−7)=18x3−42x2−105x2+245x+147x−343
Combine like terms:
=18x3−147x2+392x−343
So, (f⋅k)(x)=18x3−147x2+392x−343.
4. (k+m)(x)
This represents the sum of the functions k(x) and m(x):
(k+m)(x)=k(x)+m(x)=(3x−7)+(4x+22)
Simplify the expression:
=3x−7+4x+22=7x+15
So, (k+m)(x)=7x+15.
5. h(k)−(k⋅m)(x)
This is a two-part problem:
First, evaluate h(k(x)), which means substituting k(x)=3x−7 into h(x):
h(k(x))=h(3x−7)=(3x−7)2+3(3x−7)−4
Expanding the square and simplifying:
[
= (9x^2 - 42x + 49) + (9x - 21) - 4 = 9x^2 - 42x + 49 +
Ask a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Algebra Functions Operations with Functions
Formulas
Difference of functions: (f - g)(x) = f(x) - g(x) Division of functions: (f/g)(x) = f(x) / g(x) Multiplication of functions: (f * g)(x) = f(x) * g(x) Sum of functions: (f + g)(x) = f(x) + g(x)