Math Problem Statement

Given the functions: 1. f(x) = 6x^2 - 35x + 49 2. g(x) = (4x/3) + 2 3. j(x) = 2/x - 1 4. k(x) = 3x - 7 5. m(x) = 4x + 22 6. h(x) = x^2 + 3x - 4 Perform the following operations: 1. (h - k)(x) 2. (g/j)(x) 3. (f * k)(x) 4. (k + m)(x) 5. h(k) - (k * m)(x)

Solution

Here are the functions and operations as shown in the image:

Given functions:

  • f(x)=6x235x+49f(x) = 6x^2 - 35x + 49
  • g(x)=4x3+2g(x) = \frac{4x}{3} + 2
  • j(x)=2x1j(x) = \frac{2}{x} - 1
  • k(x)=3x7k(x) = 3x - 7
  • m(x)=4x+22m(x) = 4x + 22
  • h(x)=x2+3x4h(x) = x^2 + 3x - 4

Tasks:

  1. (hk)(x)(h - k)(x)
  2. (gj)(x)\left(\frac{g}{j}\right)(x)
  3. (fk)(x)(f \cdot k)(x)
  4. (k+m)(x)(k + m)(x)
  5. h(k)(km)(x)h(k) - (k \cdot m)(x)

Let's solve them step by step:

1. (hk)(x)(h - k)(x)

This represents the difference between the functions h(x)h(x) and k(x)k(x): (hk)(x)=h(x)k(x)=(x2+3x4)(3x7)(h - k)(x) = h(x) - k(x) = (x^2 + 3x - 4) - (3x - 7) Simplify the expression: =x2+3x43x+7=x2+3x3x4+7=x2+3= x^2 + 3x - 4 - 3x + 7 = x^2 + 3x - 3x - 4 + 7 = x^2 + 3 So, (hk)(x)=x2+3(h - k)(x) = x^2 + 3.

2. (gj)(x)\left(\frac{g}{j}\right)(x)

This represents the division of the functions g(x)g(x) and j(x)j(x): (gj)(x)=g(x)j(x)=4x3+22x1\left(\frac{g}{j}\right)(x) = \frac{g(x)}{j(x)} = \frac{\frac{4x}{3} + 2}{\frac{2}{x} - 1} To simplify this, multiply the numerator and denominator by xx: (4x3+2)x(2x1)x=4x23+2x2x\frac{\left(\frac{4x}{3} + 2\right) \cdot x}{\left(\frac{2}{x} - 1\right) \cdot x} = \frac{\frac{4x^2}{3} + 2x}{2 - x} So, (gj)(x)=4x23+2x2x\left(\frac{g}{j}\right)(x) = \frac{\frac{4x^2}{3} + 2x}{2 - x}.

3. (fk)(x)(f \cdot k)(x)

This represents the product of the functions f(x)f(x) and k(x)k(x): (fk)(x)=f(x)k(x)=(6x235x+49)(3x7)(f \cdot k)(x) = f(x) \cdot k(x) = (6x^2 - 35x + 49)(3x - 7) Expanding this: (6x235x+49)(3x7)=6x2(3x)+6x2(7)35x(3x)35x(7)+49(3x)+49(7)(6x^2 - 35x + 49)(3x - 7) = 6x^2(3x) + 6x^2(-7) - 35x(3x) - 35x(-7) + 49(3x) + 49(-7) =18x342x2105x2+245x+147x343= 18x^3 - 42x^2 - 105x^2 + 245x + 147x - 343 Combine like terms: =18x3147x2+392x343= 18x^3 - 147x^2 + 392x - 343 So, (fk)(x)=18x3147x2+392x343(f \cdot k)(x) = 18x^3 - 147x^2 + 392x - 343.

4. (k+m)(x)(k + m)(x)

This represents the sum of the functions k(x)k(x) and m(x)m(x): (k+m)(x)=k(x)+m(x)=(3x7)+(4x+22)(k + m)(x) = k(x) + m(x) = (3x - 7) + (4x + 22) Simplify the expression: =3x7+4x+22=7x+15= 3x - 7 + 4x + 22 = 7x + 15 So, (k+m)(x)=7x+15(k + m)(x) = 7x + 15.

5. h(k)(km)(x)h(k) - (k \cdot m)(x)

This is a two-part problem:

  1. First, evaluate h(k(x))h(k(x)), which means substituting k(x)=3x7k(x) = 3x - 7 into h(x)h(x): h(k(x))=h(3x7)=(3x7)2+3(3x7)4h(k(x)) = h(3x - 7) = (3x - 7)^2 + 3(3x - 7) - 4 Expanding the square and simplifying: [ = (9x^2 - 42x + 49) + (9x - 21) - 4 = 9x^2 - 42x + 49 +

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Functions
Operations with Functions

Formulas

Difference of functions: (f - g)(x) = f(x) - g(x)
Division of functions: (f/g)(x) = f(x) / g(x)
Multiplication of functions: (f * g)(x) = f(x) * g(x)
Sum of functions: (f + g)(x) = f(x) + g(x)

Theorems

Basic operations with functions

Suitable Grade Level

Grades 9-12