Let's solve each part of the problem based on the given functions:
Given:
- f(x)=3x+2x2−10
- g(x)=5x−x+152
First, simplify g(x):
- g(x)=5x−x+152=4x+225
A. (f+g)(x)
We add f(x) and g(x):
(f+g)(x)=f(x)+g(x)=(3x+2x2−10)+(4x+225)
=2x2+(3x+4x)+(−10+225)=2x2+7x+215
B. (f+g)(5)
Substitute x=5 into (f+g)(x):
(f+g)(5)=2(5)2+7(5)+215=2(25)+35+215=50+35+215=300
C. (f−g)(x)
We subtract g(x) from f(x):
(f−g)(x)=f(x)−g(x)=(3x+2x2−10)−(4x+225)
=2x2+(3x−4x)+(−10−225)=2x2−x−235
D. (f−g)(−6)
Substitute x=−6 into (f−g)(x):
(f−g)(−6)=2(−6)2−(−6)−235=2(36)+6−235=72+6−235=−157
E. (f⋅g)(x)
Multiply f(x) by g(x):
(f⋅g)(x)=(3x+2x2−10)(4x+225)
Expanding this:
=3x(4x+225)+2x2(4x+225)−10(4x+225)
=12x2+675x+8x3+450x2−40x−2250
=8x3+(12x2+450x2)+(675x−40x)−2250
=8x3+462x2+635x−2250
F. (f⋅g)(2)
Substitute x=2 into (f⋅g)(x):
(f⋅g)(2)=8(2)3+462(2)2+635(2)−2250
=8(8)+462(4)+635(2)−2250=64+1848+1270−2250
=3182−2250=932
G. (f/g)(x)
Divide f(x) by g(x):
(f/g)(x)=g(x)f(x)=4x+2253x+2x2−10
H. (f/g)(3)
Substitute x=3 into (f/g)(x):
f(3)=3(3)+2(3)2−10=9+18−10=17
g(3)=4(3)+225=12+225=237
(f/g)(3)=23717
Final Answers:
- A. (f+g)(x)=2x2+7x+215
- B. (f+g)(5)=300
- C. (f−g)(x)=2x2−x−235
- D. (f−g)(−6)=−157
- E. (f⋅g)(x)=8x3+462x2+635x−2250
- F. (f⋅g)(2)=932
- G. (f/g)(x)=4x+2253x+2x2−10
- H. (f/g)(3)=23717
Would you like any further explanation on these steps?
Here are five questions you can explore further:
- How do you perform long division on rational functions?
- What are the properties of polynomials when added or subtracted?
- How can factoring help in simplifying products of functions?
- What are the practical applications of multiplying and dividing functions?
- How does one find the domain of a function involving division?
Tip: When multiplying polynomials, remember to distribute each term in one polynomial to every term in the other.