Math Problem Statement

The functions f and g are defined as ​f(x)equals 7xplus4 and ​g(x)equals 1minus6x.Find ​(fplus ​g)(x), ​(fminus ​g)(x), ​(fg)(x), (ff)(x), left parenthesis StartFraction f Over g EndFraction right parenthesis left parenthesis x right parenthesis ​, and left parenthesis StartFraction g Over f EndFraction right parenthesis left parenthesis x right parenthesis .

Solution

Given the functions:

f(x)=7x+4f(x) = 7x + 4 g(x)=16xg(x) = 1 - 6x

We need to find the following expressions:

  1. (f+g)(x)(f + g)(x)
  2. (fg)(x)(f - g)(x)
  3. (fg)(x)(f \cdot g)(x)
  4. (ff)(x)(f \cdot f)(x)
  5. (fg)(x)\left( \frac{f}{g} \right)(x)
  6. (gf)(x)\left( \frac{g}{f} \right)(x)

1. (f+g)(x)(f + g)(x)

To add the two functions, simply add f(x)f(x) and g(x)g(x) together:

(f+g)(x)=f(x)+g(x)=(7x+4)+(16x)(f + g)(x) = f(x) + g(x) = (7x + 4) + (1 - 6x) Combine like terms:

(f+g)(x)=7x6x+4+1=x+5(f + g)(x) = 7x - 6x + 4 + 1 = x + 5

2. (fg)(x)(f - g)(x)

To subtract g(x)g(x) from f(x)f(x), subtract the expression for g(x)g(x) from f(x)f(x):

(fg)(x)=f(x)g(x)=(7x+4)(16x)(f - g)(x) = f(x) - g(x) = (7x + 4) - (1 - 6x) Distribute the negative sign and combine like terms:

(fg)(x)=7x+41+6x=13x+3(f - g)(x) = 7x + 4 - 1 + 6x = 13x + 3

3. (fg)(x)(f \cdot g)(x)

To multiply the two functions, simply multiply f(x)f(x) by g(x)g(x):

(fg)(x)=f(x)g(x)=(7x+4)(16x)(f \cdot g)(x) = f(x) \cdot g(x) = (7x + 4)(1 - 6x) Use the distributive property (FOIL):

(fg)(x)=7x(1)+7x(6x)+4(1)+4(6x)=7x42x2+424x(f \cdot g)(x) = 7x(1) + 7x(-6x) + 4(1) + 4(-6x) = 7x - 42x^2 + 4 - 24x Combine like terms:

(fg)(x)=42x217x+4(f \cdot g)(x) = -42x^2 - 17x + 4

4. (ff)(x)(f \cdot f)(x)

To multiply f(x)f(x) by itself, square f(x)f(x):

(ff)(x)=f(x)f(x)=(7x+4)(7x+4)(f \cdot f)(x) = f(x) \cdot f(x) = (7x + 4)(7x + 4) Use the distributive property (FOIL):

(ff)(x)=7x(7x)+7x(4)+4(7x)+4(4)=49x2+28x+28x+16(f \cdot f)(x) = 7x(7x) + 7x(4) + 4(7x) + 4(4) = 49x^2 + 28x + 28x + 16 Combine like terms:

(ff)(x)=49x2+56x+16(f \cdot f)(x) = 49x^2 + 56x + 16

5. (fg)(x)\left( \frac{f}{g} \right)(x)

To divide f(x)f(x) by g(x)g(x), we take the ratio:

(fg)(x)=f(x)g(x)=7x+416x\left( \frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} = \frac{7x + 4}{1 - 6x}

This is the simplified form of the expression.

6. (gf)(x)\left( \frac{g}{f} \right)(x)

To divide g(x)g(x) by f(x)f(x), we take the ratio:

(gf)(x)=g(x)f(x)=16x7x+4\left( \frac{g}{f} \right)(x) = \frac{g(x)}{f(x)} = \frac{1 - 6x}{7x + 4}

This is the simplified form of the expression.


Summary of Results:

  1. (f+g)(x)=x+5(f + g)(x) = x + 5
  2. (fg)(x)=13x+3(f - g)(x) = 13x + 3
  3. (fg)(x)=42x217x+4(f \cdot g)(x) = -42x^2 - 17x + 4
  4. (ff)(x)=49x2+56x+16(f \cdot f)(x) = 49x^2 + 56x + 16
  5. (fg)(x)=7x+416x\left( \frac{f}{g} \right)(x) = \frac{7x + 4}{1 - 6x}
  6. (gf)(x)=16x7x+4\left( \frac{g}{f} \right)(x) = \frac{1 - 6x}{7x + 4}

Would you like any further details or explanations on these calculations?

Here are some related questions for further practice:

  1. How would the graph of (f+g)(x)(f + g)(x) compare to the individual graphs of f(x)f(x) and g(x)g(x)?
  2. What happens to (fg)(x)\left( \frac{f}{g} \right)(x) as xx approaches certain values?
  3. How can you find the roots of the equation (fg)(x)=0(f \cdot g)(x) = 0?
  4. What are the domain restrictions for (fg)(x)\left( \frac{f}{g} \right)(x)?
  5. How would you solve (ff)(x)=0(f \cdot f)(x) = 0?

Tip: When adding or subtracting functions, always combine like terms (e.g., constants with constants, and terms with the same variable power).

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Functions
Addition of functions
Subtraction of functions
Multiplication of functions
Division of functions
Algebra

Formulas

(f + g)(x) = f(x) + g(x)
(f - g)(x) = f(x) - g(x)
(f * g)(x) = f(x) * g(x)
(f * f)(x) = f(x) * f(x)
(f / g)(x) = f(x) / g(x)
(g / f)(x) = g(x) / f(x)

Theorems

Distributive property (FOIL method)
Combining like terms

Suitable Grade Level

Grades 9-11