Math Problem Statement

Use the given questions in operation on functions: f(x) = 3x - 2, g(x) = 5x + 2

Solution

Let's work through the operations on the given functions f(x)=3x2f(x) = 3x - 2 and g(x)=5x+2g(x) = 5x + 2. Below are the basic operations we can perform with these functions:

1. Addition of Functions:

(f+g)(x)=f(x)+g(x)(f + g)(x) = f(x) + g(x) (f+g)(x)=(3x2)+(5x+2)=3x+5x2+2=8x(f + g)(x) = (3x - 2) + (5x + 2) = 3x + 5x - 2 + 2 = 8x Thus, (f+g)(x)=8x(f + g)(x) = 8x.

2. Subtraction of Functions:

(fg)(x)=f(x)g(x)(f - g)(x) = f(x) - g(x) (fg)(x)=(3x2)(5x+2)=3x5x22=2x4(f - g)(x) = (3x - 2) - (5x + 2) = 3x - 5x - 2 - 2 = -2x - 4 Thus, (fg)(x)=2x4(f - g)(x) = -2x - 4.

3. Multiplication of Functions:

(fg)(x)=f(x)g(x)(f \cdot g)(x) = f(x) \cdot g(x) (fg)(x)=(3x2)(5x+2)(f \cdot g)(x) = (3x - 2)(5x + 2) Using the distributive property: (fg)(x)=3x(5x+2)2(5x+2)=15x2+6x10x4=15x24x4(f \cdot g)(x) = 3x(5x + 2) - 2(5x + 2) = 15x^2 + 6x - 10x - 4 = 15x^2 - 4x - 4 Thus, (fg)(x)=15x24x4(f \cdot g)(x) = 15x^2 - 4x - 4.

4. Division of Functions (where g(x)0g(x) \neq 0):

(fg)(x)=f(x)g(x)\left( \frac{f}{g} \right)(x) = \frac{f(x)}{g(x)} (fg)(x)=3x25x+2\left( \frac{f}{g} \right)(x) = \frac{3x - 2}{5x + 2} Thus, (fg)(x)=3x25x+2\left( \frac{f}{g} \right)(x) = \frac{3x - 2}{5x + 2}, for x25x \neq -\frac{2}{5} to avoid division by zero.

5. Composition of Functions:

Let's compute f(g(x))f(g(x)) and g(f(x))g(f(x)).

a) f(g(x))f(g(x)):

f(g(x))=f(5x+2)=3(5x+2)2=15x+62=15x+4f(g(x)) = f(5x + 2) = 3(5x + 2) - 2 = 15x + 6 - 2 = 15x + 4 Thus, f(g(x))=15x+4f(g(x)) = 15x + 4.

b) g(f(x))g(f(x)):

g(f(x))=g(3x2)=5(3x2)+2=15x10+2=15x8g(f(x)) = g(3x - 2) = 5(3x - 2) + 2 = 15x - 10 + 2 = 15x - 8 Thus, g(f(x))=15x8g(f(x)) = 15x - 8.


Would you like more details or explanations on any of these operations?

Here are 5 follow-up questions to expand on this:

  1. What happens when we find the inverse of both f(x)f(x) and g(x)g(x)?
  2. Can we find a real solution to f(x)=g(x)f(x) = g(x)?
  3. How does the composition f(f(x))f(f(x)) or g(g(x))g(g(x)) behave?
  4. What is the domain and range of f(x)f(x) and g(x)g(x)?
  5. Can we solve f(x)g(x)=0f(x)g(x) = 0? If so, how?

Tip: When working with function composition, always apply the innermost function first.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Algebra
Functions
Function Operations
Composition of Functions

Formulas

(f + g)(x) = f(x) + g(x)
(f - g)(x) = f(x) - g(x)
(f ⋅ g)(x) = f(x) ⋅ g(x)
(f / g)(x) = f(x) / g(x) (g(x) ≠ 0)
f(g(x)) = f applied to g(x)
g(f(x)) = g applied to f(x)

Theorems

Distributive Property
Function Composition

Suitable Grade Level

Grades 9-12