Math Problem Statement

Apply the trapezoidal rule to estimate o sin(x²) dx with 6 intervals

Solution

The trapezoidal rule is a numerical method to approximate the integral of a function. Let's apply it to estimate the integral 0osin(x2)dx\int_0^o \sin(x^2) \, dx with n=6n = 6 intervals.


Step 1: Set up the formula

The trapezoidal rule for an integral abf(x)dx\int_a^b f(x) \, dx with nn intervals is:

T=Δx2[f(x0)+2i=1n1f(xi)+f(xn)],T = \frac{\Delta x}{2} \left[f(x_0) + 2\sum_{i=1}^{n-1} f(x_i) + f(x_n)\right],

where:

  • Δx=ban\Delta x = \frac{b - a}{n},
  • x0,x1,,xnx_0, x_1, \ldots, x_n are the points dividing [a,b][a, b],
  • f(x)f(x) is the function.

Step 2: Define the parameters

Here:

  • f(x)=sin(x2)f(x) = \sin(x^2),
  • a=0a = 0, b=ob = o,
  • n=6n = 6.

Calculate Δx\Delta x: Δx=o06=o6.\Delta x = \frac{o - 0}{6} = \frac{o}{6}.


Step 3: Calculate xix_i values

The points dividing the interval are: x0=0,x1=o6,x2=2o6,x3=3o6,x4=4o6,x5=5o6,x6=o.x_0 = 0, \, x_1 = \frac{o}{6}, \, x_2 = \frac{2o}{6}, \, x_3 = \frac{3o}{6}, \, x_4 = \frac{4o}{6}, \, x_5 = \frac{5o}{6}, \, x_6 = o.


Step 4: Evaluate f(xi)f(x_i)

For each xix_i, compute f(xi)=sin(xi2)f(x_i) = \sin(x_i^2):

  • f(x0)=sin(02)=0f(x_0) = \sin(0^2) = 0,
  • f(x6)=sin(o2)f(x_6) = \sin(o^2),
  • Remaining f(xi)f(x_i) depend on the specific value of oo.

Step 5: Apply the formula

Substitute into the trapezoidal rule: T=Δx2[f(x0)+2i=1n1f(xi)+f(xn)].T = \frac{\Delta x}{2} \left[f(x_0) + 2\sum_{i=1}^{n-1} f(x_i) + f(x_n)\right].

This gives the approximate value of the integral.

Would you like me to proceed with specific values of oo or explain further?

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Numerical Integration
Trapezoidal Rule

Formulas

T = (Δx / 2) [f(x₀) + 2∑f(xᵢ) + f(xₙ)]
Δx = (b - a) / n

Theorems

Trapezoidal Rule Theorem for Numerical Integration

Suitable Grade Level

Grades 11-12 or Early College