Math Problem Statement

Suppose that |f ''(x)| ≀ 39 and |f (4)(x)| ≀ 39 for all x in [0, πœ‹] . How large do we have to choose n so that the approximations Tn, Mn, and Sn to the integral πœ‹ f(x) dx

0 are accurate to within 0.00001?

Solution

We are tasked with approximating the integral of f(x)f(x) from 00 to Ο€\pi using numerical methods: the Trapezoidal Rule (TnT_n), Midpoint Rule (MnM_n), and Simpson's Rule (SnS_n). Additionally, we want to ensure that the error for each approximation is within 0.000010.00001 or 10βˆ’510^{-5}, given bounds on the second and fourth derivatives of the function f(x)f(x).

Given:

  • ∣fβ€²β€²(x)βˆ£β‰€39|f''(x)| \leq 39
  • ∣f(4)(x)βˆ£β‰€39|f^{(4)}(x)| \leq 39
  • The interval of integration is [0,Ο€][0, \pi].

1. Trapezoidal Rule Error:

The error for the Trapezoidal Rule is given by:

ET=(Ο€βˆ’0)312n2β‹…max⁑x∈[0,Ο€]∣fβ€²β€²(x)∣E_T = \frac{(\pi - 0)^3}{12n^2} \cdot \max_{x \in [0, \pi]} |f''(x)|

Substituting the given values:

ET≀π312n2β‹…39E_T \leq \frac{\pi^3}{12n^2} \cdot 39

We want ET≀10βˆ’5E_T \leq 10^{-5}, so we solve:

Ο€3β‹…3912n2≀10βˆ’5\frac{\pi^3 \cdot 39}{12n^2} \leq 10^{-5}

n2β‰₯Ο€3β‹…3912β‹…10βˆ’5n^2 \geq \frac{\pi^3 \cdot 39}{12 \cdot 10^{-5}}

nβ‰₯Ο€3β‹…3912β‹…10βˆ’5n \geq \sqrt{\frac{\pi^3 \cdot 39}{12 \cdot 10^{-5}}}

2. Midpoint Rule Error:

The error for the Midpoint Rule is similar to the Trapezoidal Rule:

EM=(Ο€βˆ’0)324n2β‹…max⁑x∈[0,Ο€]∣fβ€²β€²(x)∣E_M = \frac{(\pi - 0)^3}{24n^2} \cdot \max_{x \in [0, \pi]} |f''(x)|

Substituting values:

EM≀π324n2β‹…39E_M \leq \frac{\pi^3}{24n^2} \cdot 39

We want EM≀10βˆ’5E_M \leq 10^{-5}, so we solve:

Ο€3β‹…3924n2≀10βˆ’5\frac{\pi^3 \cdot 39}{24n^2} \leq 10^{-5}

n2β‰₯Ο€3β‹…3924β‹…10βˆ’5n^2 \geq \frac{\pi^3 \cdot 39}{24 \cdot 10^{-5}}

nβ‰₯Ο€3β‹…3924β‹…10βˆ’5n \geq \sqrt{\frac{\pi^3 \cdot 39}{24 \cdot 10^{-5}}}

3. Simpson's Rule Error:

The error for Simpson's Rule is given by:

ES=(Ο€βˆ’0)5180n4β‹…max⁑x∈[0,Ο€]∣f(4)(x)∣E_S = \frac{(\pi - 0)^5}{180n^4} \cdot \max_{x \in [0, \pi]} |f^{(4)}(x)|

Substituting the values:

ES≀π5180n4β‹…39E_S \leq \frac{\pi^5}{180n^4} \cdot 39

We want ES≀10βˆ’5E_S \leq 10^{-5}, so we solve:

Ο€5β‹…39180n4≀10βˆ’5\frac{\pi^5 \cdot 39}{180n^4} \leq 10^{-5}

n4β‰₯Ο€5β‹…39180β‹…10βˆ’5n^4 \geq \frac{\pi^5 \cdot 39}{180 \cdot 10^{-5}}

nβ‰₯Ο€5β‹…39180β‹…10βˆ’54n \geq \sqrt[4]{\frac{\pi^5 \cdot 39}{180 \cdot 10^{-5}}}

Summary of nn values:

  1. nβ‰₯Ο€3β‹…3912β‹…10βˆ’5n \geq \sqrt{\frac{\pi^3 \cdot 39}{12 \cdot 10^{-5}}} for the Trapezoidal Rule
  2. nβ‰₯Ο€3β‹…3924β‹…10βˆ’5n \geq \sqrt{\frac{\pi^3 \cdot 39}{24 \cdot 10^{-5}}} for the Midpoint Rule
  3. nβ‰₯Ο€5β‹…39180β‹…10βˆ’54n \geq \sqrt[4]{\frac{\pi^5 \cdot 39}{180 \cdot 10^{-5}}} for Simpson's Rule

Now, let's compute these values.To ensure that the approximations TnT_n, MnM_n, and SnS_n are accurate to within 0.000010.00001, the values of nn must be chosen as follows:

  1. For the Trapezoidal Rule: nβ‰₯3175n \geq 3175
  2. For the Midpoint Rule: nβ‰₯2245n \geq 2245
  3. For Simpson's Rule: nβ‰₯51n \geq 51

Simpson's Rule requires a significantly smaller nn for the same level of accuracy compared to the Trapezoidal and Midpoint Rules.

Would you like further details on these methods or any clarifications?

Related Questions:

  1. How do we derive error bounds for these numerical methods?
  2. What factors influence the accuracy of these numerical approximations?
  3. Can these methods be used for improper integrals?
  4. How do you improve accuracy without increasing nn?
  5. How does the function's behavior affect the choice of numerical method?

Tip:

Simpson's Rule often provides better accuracy with fewer intervals than both the Trapezoidal and Midpoint Rules, especially when the integrand is smooth.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Numerical Integration
Trapezoidal Rule
Midpoint Rule
Simpson's Rule
Error Bounds

Formulas

Trapezoidal Rule Error: E_T = (b - a)^3 / (12n^2) * max |f''(x)|
Midpoint Rule Error: E_M = (b - a)^3 / (24n^2) * max |f''(x)|
Simpson's Rule Error: E_S = (b - a)^5 / (180n^4) * max |f^{(4)}(x)|

Theorems

Error Bound for the Trapezoidal Rule
Error Bound for the Midpoint Rule
Error Bound for Simpson's Rule

Suitable Grade Level

University Level (Calculus II or Numerical Analysis)