Math Problem StatementUse Newton's method to estimate the solutions of the equation 9x^2 + 4x - 1 = 0. Start with x_0 = -1 for the left solution and x_0 = 1 for the right solution. Find x_2 in each case.
SolutionTo solve this problem, let's use Newton's Method to approximate the roots of the equation:
9 x 2 + 4 x − 1 = 0 9x^2 + 4x - 1 = 0 9 x 2 + 4 x − 1 = 0
Newton's Method formula is:
x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} x n + 1 = x n − f ′ ( x n ) f ( x n )
where f ( x ) = 9 x 2 + 4 x − 1 f(x) = 9x^2 + 4x - 1 f ( x ) = 9 x 2 + 4 x − 1 , and we need to compute f ′ ( x ) f'(x) f ′ ( x ) , the derivative of f ( x ) f(x) f ( x ) .
Step 1: Find f ( x ) f(x) f ( x ) and f ′ ( x ) f'(x) f ′ ( x )
f ( x ) = 9 x 2 + 4 x − 1 f(x) = 9x^2 + 4x - 1 f ( x ) = 9 x 2 + 4 x − 1
f ′ ( x ) = 18 x + 4 f'(x) = 18x + 4 f ′ ( x ) = 18 x + 4 (by differentiating f ( x ) f(x) f ( x ) with respect to x x x ).
Step 2: Use Newton’s Method for Each Initial Value
Case 1: x 0 = − 1 x_0 = -1 x 0 = − 1
Calculate f ( x 0 ) f(x_0) f ( x 0 ) and f ′ ( x 0 ) f'(x_0) f ′ ( x 0 ) :
f ( − 1 ) = 9 ( − 1 ) 2 + 4 ( − 1 ) − 1 = 9 − 4 − 1 = 4 f(-1) = 9(-1)^2 + 4(-1) - 1 = 9 - 4 - 1 = 4 f ( − 1 ) = 9 ( − 1 ) 2 + 4 ( − 1 ) − 1 = 9 − 4 − 1 = 4
f ′ ( − 1 ) = 18 ( − 1 ) + 4 = − 18 + 4 = − 14 f'(-1) = 18(-1) + 4 = -18 + 4 = -14 f ′ ( − 1 ) = 18 ( − 1 ) + 4 = − 18 + 4 = − 14
Calculate x 1 x_1 x 1 :
x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) = − 1 − 4 − 14 = − 1 + 2 7 = − 5 7 ≈ − 0.7143 x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = -1 - \frac{4}{-14} = -1 + \frac{2}{7} = -\frac{5}{7} \approx -0.7143 x 1 = x 0 − f ′ ( x 0 ) f ( x 0 ) = − 1 − − 14 4 = − 1 + 7 2 = − 7 5 ≈ − 0.7143
Calculate f ( x 1 ) f(x_1) f ( x 1 ) and f ′ ( x 1 ) f'(x_1) f ′ ( x 1 ) :
f ( − 5 7 ) = 9 ( − 5 7 ) 2 + 4 ( − 5 7 ) − 1 ≈ 1.3061 f\left(-\frac{5}{7}\right) = 9\left(-\frac{5}{7}\right)^2 + 4\left(-\frac{5}{7}\right) - 1 \approx 1.3061 f ( − 7 5 ) = 9 ( − 7 5 ) 2 + 4 ( − 7 5 ) − 1 ≈ 1.3061
f ′ ( − 5 7 ) = 18 ( − 5 7 ) + 4 ≈ − 8.8571 f'\left(-\frac{5}{7}\right) = 18\left(-\frac{5}{7}\right) + 4 \approx -8.8571 f ′ ( − 7 5 ) = 18 ( − 7 5 ) + 4 ≈ − 8.8571
Calculate x 2 x_2 x 2 :
x 2 = x 1 − f ( x 1 ) f ′ ( x 1 ) ≈ − 0.7143 − 1.3061 − 8.8571 ≈ − 0.5679 x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \approx -0.7143 - \frac{1.3061}{-8.8571} \approx -0.5679 x 2 = x 1 − f ′ ( x 1 ) f ( x 1 ) ≈ − 0.7143 − − 8.8571 1.3061 ≈ − 0.5679
So, for x 0 = − 1 x_0 = -1 x 0 = − 1 , we get x 2 ≈ − 0.5679 x_2 \approx -0.5679 x 2 ≈ − 0.5679 .
Case 2: x 0 = 1 x_0 = 1 x 0 = 1
Calculate f ( x 0 ) f(x_0) f ( x 0 ) and f ′ ( x 0 ) f'(x_0) f ′ ( x 0 ) :
f ( 1 ) = 9 ( 1 ) 2 + 4 ( 1 ) − 1 = 9 + 4 − 1 = 12 f(1) = 9(1)^2 + 4(1) - 1 = 9 + 4 - 1 = 12 f ( 1 ) = 9 ( 1 ) 2 + 4 ( 1 ) − 1 = 9 + 4 − 1 = 12
f ′ ( 1 ) = 18 ( 1 ) + 4 = 18 + 4 = 22 f'(1) = 18(1) + 4 = 18 + 4 = 22 f ′ ( 1 ) = 18 ( 1 ) + 4 = 18 + 4 = 22
Calculate x 1 x_1 x 1 :
x 1 = x 0 − f ( x 0 ) f ′ ( x 0 ) = 1 − 12 22 = 1 − 6 11 = 5 11 ≈ 0.4545 x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1 - \frac{12}{22} = 1 - \frac{6}{11} = \frac{5}{11} \approx 0.4545 x 1 = x 0 − f ′ ( x 0 ) f ( x 0 ) = 1 − 22 12 = 1 − 11 6 = 11 5 ≈ 0.4545
Calculate f ( x 1 ) f(x_1) f ( x 1 ) and f ′ ( x 1 ) f'(x_1) f ′ ( x 1 ) :
f ( 5 11 ) = 9 ( 5 11 ) 2 + 4 ( 5 11 ) − 1 ≈ 3.0992 f\left(\frac{5}{11}\right) = 9\left(\frac{5}{11}\right)^2 + 4\left(\frac{5}{11}\right) - 1 \approx 3.0992 f ( 11 5 ) = 9 ( 11 5 ) 2 + 4 ( 11 5 ) − 1 ≈ 3.0992
f ′ ( 5 11 ) = 18 ( 5 11 ) + 4 ≈ 11.1818 f'\left(\frac{5}{11}\right) = 18\left(\frac{5}{11}\right) + 4 \approx 11.1818 f ′ ( 11 5 ) = 18 ( 11 5 ) + 4 ≈ 11.1818
Calculate x 2 x_2 x 2 :
x 2 = x 1 − f ( x 1 ) f ′ ( x 1 ) ≈ 0.4545 − 3.0992 11.1818 ≈ 0.1780 x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \approx 0.4545 - \frac{3.0992}{11.1818} \approx 0.1780 x 2 = x 1 − f ′ ( x 1 ) f ( x 1 ) ≈ 0.4545 − 11.1818 3.0992 ≈ 0.1780
So, for x 0 = 1 x_0 = 1 x 0 = 1 , we get x 2 ≈ 0.1780 x_2 \approx 0.1780 x 2 ≈ 0.1780 .
Summary
For x 0 = − 1 x_0 = -1 x 0 = − 1 : x 2 ≈ − 0.5679 x_2 \approx -0.5679 x 2 ≈ − 0.5679
For x 0 = 1 x_0 = 1 x 0 = 1 : x 2 ≈ 0.1780 x_2 \approx 0.1780 x 2 ≈ 0.1780
Would you like further clarification on any part of this solution?
Related Questions
How does Newton's Method converge to a solution?
Can Newton's Method fail to converge? If so, under what conditions?
How do initial guesses affect the convergence in Newton’s Method?
What is the geometric interpretation of Newton's Method?
How can we estimate the error in Newton’s Method at each iteration?
Tip
Always check the derivative f ′ ( x ) f'(x) f ′ ( x ) in Newton's Method. If f ′ ( x ) f'(x) f ′ ( x ) is close to zero, Newton's Method may fail to converge or give inaccurate results.