Math Problem Statement

Use Newton's method to estimate the solutions of the equation 9x^2 + 4x - 1 = 0. Start with x_0 = -1 for the left solution and x_0 = 1 for the right solution. Find x_2 in each case.

Solution

To solve this problem, let's use Newton's Method to approximate the roots of the equation:

9x2+4x1=09x^2 + 4x - 1 = 0

Newton's Method formula is: xn+1=xnf(xn)f(xn)x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} where f(x)=9x2+4x1f(x) = 9x^2 + 4x - 1, and we need to compute f(x)f'(x), the derivative of f(x)f(x).

Step 1: Find f(x)f(x) and f(x)f'(x)

  1. f(x)=9x2+4x1f(x) = 9x^2 + 4x - 1
  2. f(x)=18x+4f'(x) = 18x + 4 (by differentiating f(x)f(x) with respect to xx).

Step 2: Use Newton’s Method for Each Initial Value

Case 1: x0=1x_0 = -1

  1. Calculate f(x0)f(x_0) and f(x0)f'(x_0):

    • f(1)=9(1)2+4(1)1=941=4f(-1) = 9(-1)^2 + 4(-1) - 1 = 9 - 4 - 1 = 4
    • f(1)=18(1)+4=18+4=14f'(-1) = 18(-1) + 4 = -18 + 4 = -14
  2. Calculate x1x_1: x1=x0f(x0)f(x0)=1414=1+27=570.7143x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = -1 - \frac{4}{-14} = -1 + \frac{2}{7} = -\frac{5}{7} \approx -0.7143

  3. Calculate f(x1)f(x_1) and f(x1)f'(x_1):

    • f(57)=9(57)2+4(57)11.3061f\left(-\frac{5}{7}\right) = 9\left(-\frac{5}{7}\right)^2 + 4\left(-\frac{5}{7}\right) - 1 \approx 1.3061
    • f(57)=18(57)+48.8571f'\left(-\frac{5}{7}\right) = 18\left(-\frac{5}{7}\right) + 4 \approx -8.8571
  4. Calculate x2x_2: x2=x1f(x1)f(x1)0.71431.30618.85710.5679x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \approx -0.7143 - \frac{1.3061}{-8.8571} \approx -0.5679

So, for x0=1x_0 = -1, we get x20.5679x_2 \approx -0.5679.

Case 2: x0=1x_0 = 1

  1. Calculate f(x0)f(x_0) and f(x0)f'(x_0):

    • f(1)=9(1)2+4(1)1=9+41=12f(1) = 9(1)^2 + 4(1) - 1 = 9 + 4 - 1 = 12
    • f(1)=18(1)+4=18+4=22f'(1) = 18(1) + 4 = 18 + 4 = 22
  2. Calculate x1x_1: x1=x0f(x0)f(x0)=11222=1611=5110.4545x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 1 - \frac{12}{22} = 1 - \frac{6}{11} = \frac{5}{11} \approx 0.4545

  3. Calculate f(x1)f(x_1) and f(x1)f'(x_1):

    • f(511)=9(511)2+4(511)13.0992f\left(\frac{5}{11}\right) = 9\left(\frac{5}{11}\right)^2 + 4\left(\frac{5}{11}\right) - 1 \approx 3.0992
    • f(511)=18(511)+411.1818f'\left(\frac{5}{11}\right) = 18\left(\frac{5}{11}\right) + 4 \approx 11.1818
  4. Calculate x2x_2: x2=x1f(x1)f(x1)0.45453.099211.18180.1780x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \approx 0.4545 - \frac{3.0992}{11.1818} \approx 0.1780

So, for x0=1x_0 = 1, we get x20.1780x_2 \approx 0.1780.

Summary

  • For x0=1x_0 = -1: x20.5679x_2 \approx -0.5679
  • For x0=1x_0 = 1: x20.1780x_2 \approx 0.1780

Would you like further clarification on any part of this solution?

Related Questions

  1. How does Newton's Method converge to a solution?
  2. Can Newton's Method fail to converge? If so, under what conditions?
  3. How do initial guesses affect the convergence in Newton’s Method?
  4. What is the geometric interpretation of Newton's Method?
  5. How can we estimate the error in Newton’s Method at each iteration?

Tip

Always check the derivative f(x)f'(x) in Newton's Method. If f(x)f'(x) is close to zero, Newton's Method may fail to converge or give inaccurate results.

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Calculus
Newton's Method
Root Approximation

Formulas

Newton's Method: x_{n+1} = x_n - f(x_n) / f'(x_n)

Theorems

Newton's Method for Root Approximation

Suitable Grade Level

Undergraduate Calculus or Advanced High School Calculus