Math Problem Statement
Solution
To calculate and using Newton's interpolation formula, we'll proceed with the following steps:
Newton’s Forward Difference Interpolation Formula:
The Newton forward difference interpolation formula is given as:
Where:
- is the interpolated value of the function.
- is the first value of in the table.
- , , etc., are the forward differences.
We'll calculate both and by applying this method using the data provided in the table:
\hline x^\circ & \cos x \\ \hline 10 & 0.9848 \\ 20 & 0.9397 \\ 30 & 0.8660 \\ 40 & 0.7660 \\ 50 & 0.6428 \\ 60 & 0.5000 \\ 70 & 0.3420 \\ 80 & 0.1737 \\ \hline \end{array}$$ Let me compute the forward differences and apply Newton's formula for both $$25^\circ$$ and $$73^\circ$$.The forward difference table is computed as shown below: $$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x^\circ & \cos x & \Delta^1 & \Delta^2 & \Delta^3 & \Delta^4 & \Delta^5 & \Delta^6 & \Delta^7 \\ \hline 10 & 0.9848 & -0.0451 & -0.0286 & 0.0023 & 0.0008 & -0.0003 & 0.0006 & -0.0012 \\ 20 & 0.9397 & -0.0737 & -0.0263 & 0.0031 & 0.0005 & 0.0003 & -0.0006 & 0.0000 \\ 30 & 0.8660 & -0.1000 & -0.0232 & 0.0036 & 0.0008 & -0.0003 & 0.0000 & 0.0000 \\ 40 & 0.7660 & -0.1232 & -0.0196 & 0.0044 & 0.0005 & 0.0000 & 0.0000 & 0.0000 \\ 50 & 0.6428 & -0.1428 & -0.0152 & 0.0049 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 60 & 0.5000 & -0.1580 & -0.0103 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 70 & 0.3420 & -0.1683 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 80 & 0.1737 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ \hline \end{array}$$ Now, let's apply Newton's forward difference interpolation to estimate $$\cos 25^\circ$$ and $$\cos 73^\circ$$. ### Interpolation for $$\cos 25^\circ$$: We willAsk a new question for Free
By Image
Drop file here or Click Here to upload
Math Problem Analysis
Mathematical Concepts
Interpolation
Trigonometry
Formulas
Newton's Forward Difference Interpolation Formula
Theorems
Newton's Interpolation Theorem
Suitable Grade Level
Undergraduate level or advanced high school students (Grade 11-12)
Related Recommendation
Newton Interpolation Polynomial for f(x) = cos(2x) − 3sin(x)
Newton’s Forward, Backward, and Stirling Interpolation for Transcendental Functions
Calculate cos(67°) to Four Decimal Places
Find cos(π/3) Using Taylor Series Expansion and Calculate Errors
Linear Interpolation Table for Approximating cos(e^x - 2)