Math Problem Statement

Calculate cos 25° and cos 73° using Newton's interpolation formula based on the given table of cos x values.

Solution

To calculate cos25\cos 25^\circ and cos73\cos 73^\circ using Newton's interpolation formula, we'll proceed with the following steps:

Newton’s Forward Difference Interpolation Formula:

The Newton forward difference interpolation formula is given as:

f(x)=f(x0)+(xx0)1!Δf(x0)+(xx0)(xx1)2!Δ2f(x0)+f(x) = f(x_0) + \frac{(x - x_0)}{1!} \Delta f(x_0) + \frac{(x - x_0)(x - x_1)}{2!} \Delta^2 f(x_0) + \cdots

Where:

  • f(x)f(x) is the interpolated value of the function.
  • x0x_0 is the first value of xx in the table.
  • Δf(x0)\Delta f(x_0), Δ2f(x0)\Delta^2 f(x_0), etc., are the forward differences.

We'll calculate both cos25\cos 25^\circ and cos73\cos 73^\circ by applying this method using the data provided in the table:

\hline x^\circ & \cos x \\ \hline 10 & 0.9848 \\ 20 & 0.9397 \\ 30 & 0.8660 \\ 40 & 0.7660 \\ 50 & 0.6428 \\ 60 & 0.5000 \\ 70 & 0.3420 \\ 80 & 0.1737 \\ \hline \end{array}$$ Let me compute the forward differences and apply Newton's formula for both $$25^\circ$$ and $$73^\circ$$.The forward difference table is computed as shown below: $$\begin{array}{|c|c|c|c|c|c|c|c|c|} \hline x^\circ & \cos x & \Delta^1 & \Delta^2 & \Delta^3 & \Delta^4 & \Delta^5 & \Delta^6 & \Delta^7 \\ \hline 10 & 0.9848 & -0.0451 & -0.0286 & 0.0023 & 0.0008 & -0.0003 & 0.0006 & -0.0012 \\ 20 & 0.9397 & -0.0737 & -0.0263 & 0.0031 & 0.0005 & 0.0003 & -0.0006 & 0.0000 \\ 30 & 0.8660 & -0.1000 & -0.0232 & 0.0036 & 0.0008 & -0.0003 & 0.0000 & 0.0000 \\ 40 & 0.7660 & -0.1232 & -0.0196 & 0.0044 & 0.0005 & 0.0000 & 0.0000 & 0.0000 \\ 50 & 0.6428 & -0.1428 & -0.0152 & 0.0049 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 60 & 0.5000 & -0.1580 & -0.0103 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 70 & 0.3420 & -0.1683 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ 80 & 0.1737 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 & 0.0000 \\ \hline \end{array}$$ Now, let's apply Newton's forward difference interpolation to estimate $$\cos 25^\circ$$ and $$\cos 73^\circ$$. ### Interpolation for $$\cos 25^\circ$$: We will

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Interpolation
Trigonometry

Formulas

Newton's Forward Difference Interpolation Formula

Theorems

Newton's Interpolation Theorem

Suitable Grade Level

Undergraduate level or advanced high school students (Grade 11-12)