Math Problem Statement

1. Kappaleen x-koordinaatti vaihtelee ajan funktiona liitteenä olevan kuvan mukaisesti. Vastaa seuraaviin kysymyksiin ja perustele vastauksesi lyhyesti: (a) Järjestä pisteet PQRS niiden nopeuden vx mukaan (b) Milloin vx on positiivinen, milloin yhtä suuri kuin nolla? (c) Järjestä pisteet niiden vauhdin mukaan (d) Missä pisteissä kiihtyvyys on positiivinen? (e) Missä pisteissä kiihtyvyys on negatiivinen? (f) Missä pisteissä vauhti kasvaa?

Solution

Let's analyze the problem and solve the questions step by step. The graph shows the motion of a particle where the xx-coordinate changes as a function of time. Below are the tasks requested:

Step-by-step Analysis:

  1. Determine Velocity (vxv_x):

    • Velocity corresponds to the slope (dxdt\frac{dx}{dt}) of the x(t)x(t) graph. Positive slope indicates positive velocity, and negative slope indicates negative velocity.
  2. Determine Acceleration (axa_x):

    • Acceleration corresponds to the change in the slope of the velocity (dvxdt\frac{dv_x}{dt}). If the slope of the graph is increasing (convex curve), acceleration is positive. If it is decreasing (concave curve), acceleration is negative.

Answers to the questions:

(a) Järjestä pisteet P, Q, R, S niiden nopeuden (vxv_x) mukaan:

  • Velocity (vxv_x) is given by the slope of the graph at each point:
    • PP: Negative slope
    • QQ: Zero slope
    • RR: Positive slope
    • SS: Zero slope
  • Order: P<Q=S<RP < Q = S < R.

(b) Milloin vxv_x on positiivinen, milloin yhtä suuri kuin nolla?:

  • vx>0v_x > 0: Positive slope between QQ and RR.
  • vx=0v_x = 0: Zero slope at QQ and SS.

(c) Järjestä pisteet niiden vauhdin mukaan (vx|v_x|):

  • Speed (vx|v_x|) is the magnitude of the slope:
    • PP: Steepest slope, highest vx|v_x|
    • RR: Moderate slope, second-highest vx|v_x|
    • Q=SQ = S: Zero slope.
  • Order: P>R>Q=SP > R > Q = S.

(d) Missä pisteissä kiihtyvyys on positiivinen?:

  • Positive acceleration occurs where the graph is convex (slope is increasing):
    • Between PP and QQ, and between RR and SS.

(e) Missä pisteissä kiihtyvyys on negatiivinen?:

  • Negative acceleration occurs where the graph is concave (slope is decreasing):
    • Between QQ and RR.

(f) Missä pisteissä vauhti kasvaa?:

  • Speed (vx|v_x|) increases when the graph's slope moves away from zero (either positively or negatively):
    • Between PP and QQ, and between RR and SS.

Would you like a more detailed explanation of any specific question or concept? Here are some related questions to expand your understanding:

  1. How is the slope of a graph mathematically related to velocity?
  2. What distinguishes velocity from speed in motion graphs?
  3. How does the curvature of a graph relate to acceleration?
  4. Why is acceleration positive when the slope increases, regardless of direction?
  5. Can a particle have zero velocity but non-zero acceleration?

Tip: In problems with motion graphs, always focus on slopes for velocity and curvature for acceleration!

Ask a new question for Free

By Image

Drop file here or Click Here to upload

Math Problem Analysis

Mathematical Concepts

Kinematics
Velocity
Acceleration
Motion Graphs

Formulas

Velocity: v_x = dx/dt
Acceleration: a_x = dv_x/dt

Theorems

Relationship between position, velocity, and acceleration in motion

Suitable Grade Level

Grades 10-12